123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177 |
- import os
- import traceback,gradio as gr
- import logging
- from tools.i18n.i18n import I18nAuto
- i18n = I18nAuto()
- logger = logging.getLogger(__name__)
- import librosa,ffmpeg
- import soundfile as sf
- import torch
- import sys
- from mdxnet import MDXNetDereverb
- from vr import AudioPre, AudioPreDeEcho
- weight_uvr5_root = "tools/uvr5/uvr5_weights"
- uvr5_names = []
- for name in os.listdir(weight_uvr5_root):
- if name.endswith(".pth") or "onnx" in name:
- uvr5_names.append(name.replace(".pth", ""))
- device=sys.argv[1]
- is_half=eval(sys.argv[2])
- webui_port_uvr5=int(sys.argv[3])
- is_share=eval(sys.argv[4])
- def uvr(model_name, inp_root, save_root_vocal, paths, save_root_ins, agg, format0):
- infos = []
- try:
- inp_root = inp_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
- save_root_vocal = (
- save_root_vocal.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
- )
- save_root_ins = (
- save_root_ins.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
- )
- is_hp3 = "HP3" in model_name
- if model_name == "onnx_dereverb_By_FoxJoy":
- pre_fun = MDXNetDereverb(15)
- else:
- func = AudioPre if "DeEcho" not in model_name else AudioPreDeEcho
- pre_fun = func(
- agg=int(agg),
- model_path=os.path.join(weight_uvr5_root, model_name + ".pth"),
- device=device,
- is_half=is_half,
- )
- if inp_root != "":
- paths = [os.path.join(inp_root, name) for name in os.listdir(inp_root)]
- else:
- paths = [path.name for path in paths]
- for path in paths:
- inp_path = os.path.join(inp_root, path)
- if(os.path.isfile(inp_path)==False):continue
- need_reformat = 1
- done = 0
- try:
- info = ffmpeg.probe(inp_path, cmd="ffprobe")
- if (
- info["streams"][0]["channels"] == 2
- and info["streams"][0]["sample_rate"] == "44100"
- ):
- need_reformat = 0
- pre_fun._path_audio_(
- inp_path, save_root_ins, save_root_vocal, format0,is_hp3
- )
- done = 1
- except:
- need_reformat = 1
- traceback.print_exc()
- if need_reformat == 1:
- tmp_path = "%s/%s.reformatted.wav" % (
- os.path.join(os.environ["TEMP"]),
- os.path.basename(inp_path),
- )
- os.system(
- "ffmpeg -i %s -vn -acodec pcm_s16le -ac 2 -ar 44100 %s -y"
- % (inp_path, tmp_path)
- )
- inp_path = tmp_path
- try:
- if done == 0:
- pre_fun._path_audio_(
- inp_path, save_root_ins, save_root_vocal, format0,is_hp3
- )
- infos.append("%s->Success" % (os.path.basename(inp_path)))
- yield "\n".join(infos)
- except:
- infos.append(
- "%s->%s" % (os.path.basename(inp_path), traceback.format_exc())
- )
- yield "\n".join(infos)
- except:
- infos.append(traceback.format_exc())
- yield "\n".join(infos)
- finally:
- try:
- if model_name == "onnx_dereverb_By_FoxJoy":
- del pre_fun.pred.model
- del pre_fun.pred.model_
- else:
- del pre_fun.model
- del pre_fun
- except:
- traceback.print_exc()
- print("clean_empty_cache")
- if torch.cuda.is_available():
- torch.cuda.empty_cache()
- yield "\n".join(infos)
- with gr.Blocks(title="UVR5 WebUI") as app:
- gr.Markdown(
- value=
- i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
- )
- with gr.Tabs():
- with gr.TabItem(i18n("伴奏人声分离&去混响&去回声")):
- with gr.Group():
- gr.Markdown(
- value=i18n(
- "人声伴奏分离批量处理, 使用UVR5模型。 <br>合格的文件夹路径格式举例: E:\\codes\\py39\\vits_vc_gpu\\白鹭霜华测试样例(去文件管理器地址栏拷就行了)。 <br>模型分为三类: <br>1、保留人声:不带和声的音频选这个,对主人声保留比HP5更好。内置HP2和HP3两个模型,HP3可能轻微漏伴奏但对主人声保留比HP2稍微好一丁点; <br>2、仅保留主人声:带和声的音频选这个,对主人声可能有削弱。内置HP5一个模型; <br> 3、去混响、去延迟模型(by FoxJoy):<br> (1)MDX-Net(onnx_dereverb):对于双通道混响是最好的选择,不能去除单通道混响;<br> (234)DeEcho:去除延迟效果。Aggressive比Normal去除得更彻底,DeReverb额外去除混响,可去除单声道混响,但是对高频重的板式混响去不干净。<br>去混响/去延迟,附:<br>1、DeEcho-DeReverb模型的耗时是另外2个DeEcho模型的接近2倍;<br>2、MDX-Net-Dereverb模型挺慢的;<br>3、个人推荐的最干净的配置是先MDX-Net再DeEcho-Aggressive。"
- )
- )
- with gr.Row():
- with gr.Column():
- dir_wav_input = gr.Textbox(
- label=i18n("输入待处理音频文件夹路径"),
- placeholder="C:\\Users\\Desktop\\todo-songs",
- )
- wav_inputs = gr.File(
- file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
- )
- with gr.Column():
- model_choose = gr.Dropdown(label=i18n("模型"), choices=uvr5_names)
- agg = gr.Slider(
- minimum=0,
- maximum=20,
- step=1,
- label=i18n("人声提取激进程度"),
- value=10,
- interactive=True,
- visible=False, # 先不开放调整
- )
- opt_vocal_root = gr.Textbox(
- label=i18n("指定输出主人声文件夹"), value="output/uvr5_opt"
- )
- opt_ins_root = gr.Textbox(
- label=i18n("指定输出非主人声文件夹"), value="output/uvr5_opt"
- )
- format0 = gr.Radio(
- label=i18n("导出文件格式"),
- choices=["wav", "flac", "mp3", "m4a"],
- value="flac",
- interactive=True,
- )
- but2 = gr.Button(i18n("转换"), variant="primary")
- vc_output4 = gr.Textbox(label=i18n("输出信息"))
- but2.click(
- uvr,
- [
- model_choose,
- dir_wav_input,
- opt_vocal_root,
- wav_inputs,
- opt_ins_root,
- agg,
- format0,
- ],
- [vc_output4],
- api_name="uvr_convert",
- )
- app.queue(concurrency_count=511, max_size=1022).launch(
- server_name="0.0.0.0",
- inbrowser=True,
- share=is_share,
- server_port=webui_port_uvr5,
- quiet=True,
- )
|