123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256 |
- import os
- import logging
- logger = logging.getLogger(__name__)
- import librosa
- import numpy as np
- import soundfile as sf
- import torch
- from tqdm import tqdm
- cpu = torch.device("cpu")
- class ConvTDFNetTrim:
- def __init__(
- self, device, model_name, target_name, L, dim_f, dim_t, n_fft, hop=1024
- ):
- super(ConvTDFNetTrim, self).__init__()
- self.dim_f = dim_f
- self.dim_t = 2**dim_t
- self.n_fft = n_fft
- self.hop = hop
- self.n_bins = self.n_fft // 2 + 1
- self.chunk_size = hop * (self.dim_t - 1)
- self.window = torch.hann_window(window_length=self.n_fft, periodic=True).to(
- device
- )
- self.target_name = target_name
- self.blender = "blender" in model_name
- self.dim_c = 4
- out_c = self.dim_c * 4 if target_name == "*" else self.dim_c
- self.freq_pad = torch.zeros(
- [1, out_c, self.n_bins - self.dim_f, self.dim_t]
- ).to(device)
- self.n = L // 2
- def stft(self, x):
- x = x.reshape([-1, self.chunk_size])
- x = torch.stft(
- x,
- n_fft=self.n_fft,
- hop_length=self.hop,
- window=self.window,
- center=True,
- return_complex=True,
- )
- x = torch.view_as_real(x)
- x = x.permute([0, 3, 1, 2])
- x = x.reshape([-1, 2, 2, self.n_bins, self.dim_t]).reshape(
- [-1, self.dim_c, self.n_bins, self.dim_t]
- )
- return x[:, :, : self.dim_f]
- def istft(self, x, freq_pad=None):
- freq_pad = (
- self.freq_pad.repeat([x.shape[0], 1, 1, 1])
- if freq_pad is None
- else freq_pad
- )
- x = torch.cat([x, freq_pad], -2)
- c = 4 * 2 if self.target_name == "*" else 2
- x = x.reshape([-1, c, 2, self.n_bins, self.dim_t]).reshape(
- [-1, 2, self.n_bins, self.dim_t]
- )
- x = x.permute([0, 2, 3, 1])
- x = x.contiguous()
- x = torch.view_as_complex(x)
- x = torch.istft(
- x, n_fft=self.n_fft, hop_length=self.hop, window=self.window, center=True
- )
- return x.reshape([-1, c, self.chunk_size])
- def get_models(device, dim_f, dim_t, n_fft):
- return ConvTDFNetTrim(
- device=device,
- model_name="Conv-TDF",
- target_name="vocals",
- L=11,
- dim_f=dim_f,
- dim_t=dim_t,
- n_fft=n_fft,
- )
- class Predictor:
- def __init__(self, args):
- import onnxruntime as ort
- logger.info(ort.get_available_providers())
- self.args = args
- self.model_ = get_models(
- device=cpu, dim_f=args.dim_f, dim_t=args.dim_t, n_fft=args.n_fft
- )
- self.model = ort.InferenceSession(
- os.path.join(args.onnx, self.model_.target_name + ".onnx"),
- providers=[
- "CUDAExecutionProvider",
- "DmlExecutionProvider",
- "CPUExecutionProvider",
- ],
- )
- logger.info("ONNX load done")
- def demix(self, mix):
- samples = mix.shape[-1]
- margin = self.args.margin
- chunk_size = self.args.chunks * 44100
- assert not margin == 0, "margin cannot be zero!"
- if margin > chunk_size:
- margin = chunk_size
- segmented_mix = {}
- if self.args.chunks == 0 or samples < chunk_size:
- chunk_size = samples
- counter = -1
- for skip in range(0, samples, chunk_size):
- counter += 1
- s_margin = 0 if counter == 0 else margin
- end = min(skip + chunk_size + margin, samples)
- start = skip - s_margin
- segmented_mix[skip] = mix[:, start:end].copy()
- if end == samples:
- break
- sources = self.demix_base(segmented_mix, margin_size=margin)
- """
- mix:(2,big_sample)
- segmented_mix:offset->(2,small_sample)
- sources:(1,2,big_sample)
- """
- return sources
- def demix_base(self, mixes, margin_size):
- chunked_sources = []
- progress_bar = tqdm(total=len(mixes))
- progress_bar.set_description("Processing")
- for mix in mixes:
- cmix = mixes[mix]
- sources = []
- n_sample = cmix.shape[1]
- model = self.model_
- trim = model.n_fft // 2
- gen_size = model.chunk_size - 2 * trim
- pad = gen_size - n_sample % gen_size
- mix_p = np.concatenate(
- (np.zeros((2, trim)), cmix, np.zeros((2, pad)), np.zeros((2, trim))), 1
- )
- mix_waves = []
- i = 0
- while i < n_sample + pad:
- waves = np.array(mix_p[:, i : i + model.chunk_size])
- mix_waves.append(waves)
- i += gen_size
- mix_waves = torch.tensor(mix_waves, dtype=torch.float32).to(cpu)
- with torch.no_grad():
- _ort = self.model
- spek = model.stft(mix_waves)
- if self.args.denoise:
- spec_pred = (
- -_ort.run(None, {"input": -spek.cpu().numpy()})[0] * 0.5
- + _ort.run(None, {"input": spek.cpu().numpy()})[0] * 0.5
- )
- tar_waves = model.istft(torch.tensor(spec_pred))
- else:
- tar_waves = model.istft(
- torch.tensor(_ort.run(None, {"input": spek.cpu().numpy()})[0])
- )
- tar_signal = (
- tar_waves[:, :, trim:-trim]
- .transpose(0, 1)
- .reshape(2, -1)
- .numpy()[:, :-pad]
- )
- start = 0 if mix == 0 else margin_size
- end = None if mix == list(mixes.keys())[::-1][0] else -margin_size
- if margin_size == 0:
- end = None
- sources.append(tar_signal[:, start:end])
- progress_bar.update(1)
- chunked_sources.append(sources)
- _sources = np.concatenate(chunked_sources, axis=-1)
- # del self.model
- progress_bar.close()
- return _sources
- def prediction(self, m, vocal_root, others_root, format):
- os.makedirs(vocal_root, exist_ok=True)
- os.makedirs(others_root, exist_ok=True)
- basename = os.path.basename(m)
- mix, rate = librosa.load(m, mono=False, sr=44100)
- if mix.ndim == 1:
- mix = np.asfortranarray([mix, mix])
- mix = mix.T
- sources = self.demix(mix.T)
- opt = sources[0].T
- if format in ["wav", "flac"]:
- sf.write(
- "%s/%s_main_vocal.%s" % (vocal_root, basename, format), mix - opt, rate
- )
- sf.write("%s/%s_others.%s" % (others_root, basename, format), opt, rate)
- else:
- path_vocal = "%s/%s_main_vocal.wav" % (vocal_root, basename)
- path_other = "%s/%s_others.wav" % (others_root, basename)
- sf.write(path_vocal, mix - opt, rate)
- sf.write(path_other, opt, rate)
- opt_path_vocal = path_vocal[:-4] + ".%s" % format
- opt_path_other = path_other[:-4] + ".%s" % format
- if os.path.exists(path_vocal):
- os.system(
- "ffmpeg -i %s -vn %s -q:a 2 -y" % (path_vocal, opt_path_vocal)
- )
- if os.path.exists(opt_path_vocal):
- try:
- os.remove(path_vocal)
- except:
- pass
- if os.path.exists(path_other):
- os.system(
- "ffmpeg -i %s -vn %s -q:a 2 -y" % (path_other, opt_path_other)
- )
- if os.path.exists(opt_path_other):
- try:
- os.remove(path_other)
- except:
- pass
- class MDXNetDereverb:
- def __init__(self, chunks):
- self.onnx = "%s/uvr5_weights/onnx_dereverb_By_FoxJoy"%os.path.dirname(os.path.abspath(__file__))
- self.shifts = 10 # 'Predict with randomised equivariant stabilisation'
- self.mixing = "min_mag" # ['default','min_mag','max_mag']
- self.chunks = chunks
- self.margin = 44100
- self.dim_t = 9
- self.dim_f = 3072
- self.n_fft = 6144
- self.denoise = True
- self.pred = Predictor(self)
- self.device = cpu
- def _path_audio_(self, input, vocal_root, others_root, format, is_hp3=False):
- self.pred.prediction(input, vocal_root, others_root, format)
|