123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125 |
- import torch
- import torch.nn.functional as F
- from torch import nn
- from . import spec_utils
- class Conv2DBNActiv(nn.Module):
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, dilation=1, activ=nn.ReLU):
- super(Conv2DBNActiv, self).__init__()
- self.conv = nn.Sequential(
- nn.Conv2d(
- nin,
- nout,
- kernel_size=ksize,
- stride=stride,
- padding=pad,
- dilation=dilation,
- bias=False,
- ),
- nn.BatchNorm2d(nout),
- activ(),
- )
- def __call__(self, x):
- return self.conv(x)
- class Encoder(nn.Module):
- def __init__(self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.LeakyReLU):
- super(Encoder, self).__init__()
- self.conv1 = Conv2DBNActiv(nin, nout, ksize, stride, pad, activ=activ)
- self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
- def __call__(self, x):
- h = self.conv1(x)
- h = self.conv2(h)
- return h
- class Decoder(nn.Module):
- def __init__(
- self, nin, nout, ksize=3, stride=1, pad=1, activ=nn.ReLU, dropout=False
- ):
- super(Decoder, self).__init__()
- self.conv1 = Conv2DBNActiv(nin, nout, ksize, 1, pad, activ=activ)
- # self.conv2 = Conv2DBNActiv(nout, nout, ksize, 1, pad, activ=activ)
- self.dropout = nn.Dropout2d(0.1) if dropout else None
- def __call__(self, x, skip=None):
- x = F.interpolate(x, scale_factor=2, mode="bilinear", align_corners=True)
- if skip is not None:
- skip = spec_utils.crop_center(skip, x)
- x = torch.cat([x, skip], dim=1)
- h = self.conv1(x)
- # h = self.conv2(h)
- if self.dropout is not None:
- h = self.dropout(h)
- return h
- class ASPPModule(nn.Module):
- def __init__(self, nin, nout, dilations=(4, 8, 12), activ=nn.ReLU, dropout=False):
- super(ASPPModule, self).__init__()
- self.conv1 = nn.Sequential(
- nn.AdaptiveAvgPool2d((1, None)),
- Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ),
- )
- self.conv2 = Conv2DBNActiv(nin, nout, 1, 1, 0, activ=activ)
- self.conv3 = Conv2DBNActiv(
- nin, nout, 3, 1, dilations[0], dilations[0], activ=activ
- )
- self.conv4 = Conv2DBNActiv(
- nin, nout, 3, 1, dilations[1], dilations[1], activ=activ
- )
- self.conv5 = Conv2DBNActiv(
- nin, nout, 3, 1, dilations[2], dilations[2], activ=activ
- )
- self.bottleneck = Conv2DBNActiv(nout * 5, nout, 1, 1, 0, activ=activ)
- self.dropout = nn.Dropout2d(0.1) if dropout else None
- def forward(self, x):
- _, _, h, w = x.size()
- feat1 = F.interpolate(
- self.conv1(x), size=(h, w), mode="bilinear", align_corners=True
- )
- feat2 = self.conv2(x)
- feat3 = self.conv3(x)
- feat4 = self.conv4(x)
- feat5 = self.conv5(x)
- out = torch.cat((feat1, feat2, feat3, feat4, feat5), dim=1)
- out = self.bottleneck(out)
- if self.dropout is not None:
- out = self.dropout(out)
- return out
- class LSTMModule(nn.Module):
- def __init__(self, nin_conv, nin_lstm, nout_lstm):
- super(LSTMModule, self).__init__()
- self.conv = Conv2DBNActiv(nin_conv, 1, 1, 1, 0)
- self.lstm = nn.LSTM(
- input_size=nin_lstm, hidden_size=nout_lstm // 2, bidirectional=True
- )
- self.dense = nn.Sequential(
- nn.Linear(nout_lstm, nin_lstm), nn.BatchNorm1d(nin_lstm), nn.ReLU()
- )
- def forward(self, x):
- N, _, nbins, nframes = x.size()
- h = self.conv(x)[:, 0] # N, nbins, nframes
- h = h.permute(2, 0, 1) # nframes, N, nbins
- h, _ = self.lstm(h)
- h = self.dense(h.reshape(-1, h.size()[-1])) # nframes * N, nbins
- h = h.reshape(nframes, N, 1, nbins)
- h = h.permute(1, 2, 3, 0)
- return h
|