123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371 |
- import os
- import glob
- import sys
- import argparse
- import logging
- import json
- import subprocess
- import traceback
- import librosa
- import numpy as np
- from scipy.io.wavfile import read
- import torch
- import logging
- logging.getLogger("numba").setLevel(logging.ERROR)
- logging.getLogger("matplotlib").setLevel(logging.ERROR)
- MATPLOTLIB_FLAG = False
- logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
- logger = logging
- def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
- assert os.path.isfile(checkpoint_path)
- checkpoint_dict = torch.load(checkpoint_path, map_location="cpu")
- iteration = checkpoint_dict["iteration"]
- learning_rate = checkpoint_dict["learning_rate"]
- if (
- optimizer is not None
- and not skip_optimizer
- and checkpoint_dict["optimizer"] is not None
- ):
- optimizer.load_state_dict(checkpoint_dict["optimizer"])
- saved_state_dict = checkpoint_dict["model"]
- if hasattr(model, "module"):
- state_dict = model.module.state_dict()
- else:
- state_dict = model.state_dict()
- new_state_dict = {}
- for k, v in state_dict.items():
- try:
- # assert "quantizer" not in k
- # print("load", k)
- new_state_dict[k] = saved_state_dict[k]
- assert saved_state_dict[k].shape == v.shape, (
- saved_state_dict[k].shape,
- v.shape,
- )
- except:
- traceback.print_exc()
- print(
- "error, %s is not in the checkpoint" % k
- ) # shape不对也会,比如text_embedding当cleaner修改时
- new_state_dict[k] = v
- if hasattr(model, "module"):
- model.module.load_state_dict(new_state_dict)
- else:
- model.load_state_dict(new_state_dict)
- print("load ")
- logger.info(
- "Loaded checkpoint '{}' (iteration {})".format(checkpoint_path, iteration)
- )
- return model, optimizer, learning_rate, iteration
- from time import time as ttime
- import shutil
- def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
- dir=os.path.dirname(path)
- name=os.path.basename(path)
- tmp_path="%s.pth"%(ttime())
- torch.save(fea,tmp_path)
- shutil.move(tmp_path,"%s/%s"%(dir,name))
- def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
- logger.info(
- "Saving model and optimizer state at iteration {} to {}".format(
- iteration, checkpoint_path
- )
- )
- if hasattr(model, "module"):
- state_dict = model.module.state_dict()
- else:
- state_dict = model.state_dict()
- # torch.save(
- my_save(
- {
- "model": state_dict,
- "iteration": iteration,
- "optimizer": optimizer.state_dict(),
- "learning_rate": learning_rate,
- },
- checkpoint_path,
- )
- def summarize(
- writer,
- global_step,
- scalars={},
- histograms={},
- images={},
- audios={},
- audio_sampling_rate=22050,
- ):
- for k, v in scalars.items():
- writer.add_scalar(k, v, global_step)
- for k, v in histograms.items():
- writer.add_histogram(k, v, global_step)
- for k, v in images.items():
- writer.add_image(k, v, global_step, dataformats="HWC")
- for k, v in audios.items():
- writer.add_audio(k, v, global_step, audio_sampling_rate)
- def latest_checkpoint_path(dir_path, regex="G_*.pth"):
- f_list = glob.glob(os.path.join(dir_path, regex))
- f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
- x = f_list[-1]
- print(x)
- return x
- def plot_spectrogram_to_numpy(spectrogram):
- global MATPLOTLIB_FLAG
- if not MATPLOTLIB_FLAG:
- import matplotlib
- matplotlib.use("Agg")
- MATPLOTLIB_FLAG = True
- mpl_logger = logging.getLogger("matplotlib")
- mpl_logger.setLevel(logging.WARNING)
- import matplotlib.pylab as plt
- import numpy as np
- fig, ax = plt.subplots(figsize=(10, 2))
- im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none")
- plt.colorbar(im, ax=ax)
- plt.xlabel("Frames")
- plt.ylabel("Channels")
- plt.tight_layout()
- fig.canvas.draw()
- data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
- data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
- plt.close()
- return data
- def plot_alignment_to_numpy(alignment, info=None):
- global MATPLOTLIB_FLAG
- if not MATPLOTLIB_FLAG:
- import matplotlib
- matplotlib.use("Agg")
- MATPLOTLIB_FLAG = True
- mpl_logger = logging.getLogger("matplotlib")
- mpl_logger.setLevel(logging.WARNING)
- import matplotlib.pylab as plt
- import numpy as np
- fig, ax = plt.subplots(figsize=(6, 4))
- im = ax.imshow(
- alignment.transpose(), aspect="auto", origin="lower", interpolation="none"
- )
- fig.colorbar(im, ax=ax)
- xlabel = "Decoder timestep"
- if info is not None:
- xlabel += "\n\n" + info
- plt.xlabel(xlabel)
- plt.ylabel("Encoder timestep")
- plt.tight_layout()
- fig.canvas.draw()
- data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="")
- data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
- plt.close()
- return data
- def load_wav_to_torch(full_path):
- data, sampling_rate = librosa.load(full_path, sr=None)
- return torch.FloatTensor(data), sampling_rate
- def load_filepaths_and_text(filename, split="|"):
- with open(filename, encoding="utf-8") as f:
- filepaths_and_text = [line.strip().split(split) for line in f]
- return filepaths_and_text
- def get_hparams(init=True, stage=1):
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "-c",
- "--config",
- type=str,
- default="./configs/s2.json",
- help="JSON file for configuration",
- )
- parser.add_argument(
- "-p", "--pretrain", type=str, required=False, default=None, help="pretrain dir"
- )
- parser.add_argument(
- "-rs",
- "--resume_step",
- type=int,
- required=False,
- default=None,
- help="resume step",
- )
- # parser.add_argument('-e', '--exp_dir', type=str, required=False,default=None,help='experiment directory')
- # parser.add_argument('-g', '--pretrained_s2G', type=str, required=False,default=None,help='pretrained sovits gererator weights')
- # parser.add_argument('-d', '--pretrained_s2D', type=str, required=False,default=None,help='pretrained sovits discriminator weights')
- args = parser.parse_args()
- config_path = args.config
- with open(config_path, "r") as f:
- data = f.read()
- config = json.loads(data)
- hparams = HParams(**config)
- hparams.pretrain = args.pretrain
- hparams.resume_step = args.resume_step
- # hparams.data.exp_dir = args.exp_dir
- if stage == 1:
- model_dir = hparams.s1_ckpt_dir
- else:
- model_dir = hparams.s2_ckpt_dir
- config_save_path = os.path.join(model_dir, "config.json")
- if not os.path.exists(model_dir):
- os.makedirs(model_dir)
- with open(config_save_path, "w") as f:
- f.write(data)
- return hparams
- def clean_checkpoints(path_to_models="logs/44k/", n_ckpts_to_keep=2, sort_by_time=True):
- """Freeing up space by deleting saved ckpts
- Arguments:
- path_to_models -- Path to the model directory
- n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
- sort_by_time -- True -> chronologically delete ckpts
- False -> lexicographically delete ckpts
- """
- import re
- ckpts_files = [
- f
- for f in os.listdir(path_to_models)
- if os.path.isfile(os.path.join(path_to_models, f))
- ]
- name_key = lambda _f: int(re.compile("._(\d+)\.pth").match(_f).group(1))
- time_key = lambda _f: os.path.getmtime(os.path.join(path_to_models, _f))
- sort_key = time_key if sort_by_time else name_key
- x_sorted = lambda _x: sorted(
- [f for f in ckpts_files if f.startswith(_x) and not f.endswith("_0.pth")],
- key=sort_key,
- )
- to_del = [
- os.path.join(path_to_models, fn)
- for fn in (x_sorted("G")[:-n_ckpts_to_keep] + x_sorted("D")[:-n_ckpts_to_keep])
- ]
- del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
- del_routine = lambda x: [os.remove(x), del_info(x)]
- rs = [del_routine(fn) for fn in to_del]
- def get_hparams_from_dir(model_dir):
- config_save_path = os.path.join(model_dir, "config.json")
- with open(config_save_path, "r") as f:
- data = f.read()
- config = json.loads(data)
- hparams = HParams(**config)
- hparams.model_dir = model_dir
- return hparams
- def get_hparams_from_file(config_path):
- with open(config_path, "r") as f:
- data = f.read()
- config = json.loads(data)
- hparams = HParams(**config)
- return hparams
- def check_git_hash(model_dir):
- source_dir = os.path.dirname(os.path.realpath(__file__))
- if not os.path.exists(os.path.join(source_dir, ".git")):
- logger.warn(
- "{} is not a git repository, therefore hash value comparison will be ignored.".format(
- source_dir
- )
- )
- return
- cur_hash = subprocess.getoutput("git rev-parse HEAD")
- path = os.path.join(model_dir, "githash")
- if os.path.exists(path):
- saved_hash = open(path).read()
- if saved_hash != cur_hash:
- logger.warn(
- "git hash values are different. {}(saved) != {}(current)".format(
- saved_hash[:8], cur_hash[:8]
- )
- )
- else:
- open(path, "w").write(cur_hash)
- def get_logger(model_dir, filename="train.log"):
- global logger
- logger = logging.getLogger(os.path.basename(model_dir))
- logger.setLevel(logging.DEBUG)
- formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
- if not os.path.exists(model_dir):
- os.makedirs(model_dir)
- h = logging.FileHandler(os.path.join(model_dir, filename))
- h.setLevel(logging.DEBUG)
- h.setFormatter(formatter)
- logger.addHandler(h)
- return logger
- class HParams:
- def __init__(self, **kwargs):
- for k, v in kwargs.items():
- if type(v) == dict:
- v = HParams(**v)
- self[k] = v
- def keys(self):
- return self.__dict__.keys()
- def items(self):
- return self.__dict__.items()
- def values(self):
- return self.__dict__.values()
- def __len__(self):
- return len(self.__dict__)
- def __getitem__(self, key):
- return getattr(self, key)
- def __setitem__(self, key, value):
- return setattr(self, key, value)
- def __contains__(self, key):
- return key in self.__dict__
- def __repr__(self):
- return self.__dict__.__repr__()
- if __name__ == "__main__":
- print(
- load_wav_to_torch(
- "/home/fish/wenetspeech/dataset_vq/Y0000022499_wHFSeHEx9CM/S00261.flac"
- )
- )
|