123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180 |
- # modified from https://github.com/feng-yufei/shared_debugging_code/blob/main/train_t2s.py
- import os
- import pdb
- if "_CUDA_VISIBLE_DEVICES" in os.environ:
- os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
- import argparse
- import logging
- from pathlib import Path
- import torch, platform
- from pytorch_lightning import seed_everything
- from pytorch_lightning import Trainer
- from pytorch_lightning.callbacks import ModelCheckpoint
- from pytorch_lightning.loggers import TensorBoardLogger # WandbLogger
- from pytorch_lightning.strategies import DDPStrategy
- from AR.data.data_module import Text2SemanticDataModule
- from AR.models.t2s_lightning_module import Text2SemanticLightningModule
- from AR.utils.io import load_yaml_config
- logging.getLogger("numba").setLevel(logging.WARNING)
- logging.getLogger("matplotlib").setLevel(logging.WARNING)
- torch.set_float32_matmul_precision("high")
- from AR.utils import get_newest_ckpt
- from collections import OrderedDict
- from time import time as ttime
- import shutil
- def my_save(fea,path):#####fix issue: torch.save doesn't support chinese path
- dir=os.path.dirname(path)
- name=os.path.basename(path)
- tmp_path="%s.pth"%(ttime())
- torch.save(fea,tmp_path)
- shutil.move(tmp_path,"%s/%s"%(dir,name))
- class my_model_ckpt(ModelCheckpoint):
- def __init__(
- self,
- config,
- if_save_latest,
- if_save_every_weights,
- half_weights_save_dir,
- exp_name,
- **kwargs
- ):
- super().__init__(**kwargs)
- self.if_save_latest = if_save_latest
- self.if_save_every_weights = if_save_every_weights
- self.half_weights_save_dir = half_weights_save_dir
- self.exp_name = exp_name
- self.config = config
- def on_train_epoch_end(self, trainer, pl_module):
- # if not self._should_skip_saving_checkpoint(trainer) and self._should_save_on_train_epoch_end(trainer):
- if self._should_save_on_train_epoch_end(trainer):
- monitor_candidates = self._monitor_candidates(trainer)
- if (
- self._every_n_epochs >= 1
- and (trainer.current_epoch + 1) % self._every_n_epochs == 0
- ):
- if (
- self.if_save_latest == True
- ): ####如果设置只保存最后一个ckpt,在保存下一个ckpt后要清理掉之前的所有ckpt
- to_clean = list(os.listdir(self.dirpath))
- self._save_topk_checkpoint(trainer, monitor_candidates)
- if self.if_save_latest == True:
- for name in to_clean:
- try:
- os.remove("%s/%s" % (self.dirpath, name))
- except:
- pass
- if self.if_save_every_weights == True:
- to_save_od = OrderedDict()
- to_save_od["weight"] = OrderedDict()
- dictt = trainer.strategy._lightning_module.state_dict()
- for key in dictt:
- to_save_od["weight"][key] = dictt[key].half()
- to_save_od["config"] = self.config
- to_save_od["info"] = "GPT-e%s" % (trainer.current_epoch + 1)
- # torch.save(
- my_save(
- to_save_od,
- "%s/%s-e%s.ckpt"
- % (
- self.half_weights_save_dir,
- self.exp_name,
- trainer.current_epoch + 1,
- ),
- )
- self._save_last_checkpoint(trainer, monitor_candidates)
- def main(args):
- config = load_yaml_config(args.config_file)
- output_dir = Path(config["output_dir"])
- output_dir.mkdir(parents=True, exist_ok=True)
- ckpt_dir = output_dir / "ckpt"
- ckpt_dir.mkdir(parents=True, exist_ok=True)
- seed_everything(config["train"]["seed"], workers=True)
- ckpt_callback: ModelCheckpoint = my_model_ckpt(
- config=config,
- if_save_latest=config["train"]["if_save_latest"],
- if_save_every_weights=config["train"]["if_save_every_weights"],
- half_weights_save_dir=config["train"]["half_weights_save_dir"],
- exp_name=config["train"]["exp_name"],
- save_top_k=-1,
- monitor="top_3_acc",
- mode="max",
- save_on_train_epoch_end=True,
- every_n_epochs=config["train"]["save_every_n_epoch"],
- dirpath=ckpt_dir,
- )
- logger = TensorBoardLogger(name=output_dir.stem, save_dir=output_dir)
- os.environ["MASTER_ADDR"]="localhost"
- trainer: Trainer = Trainer(
- max_epochs=config["train"]["epochs"],
- accelerator="gpu",
- # val_check_interval=9999999999999999999999,###不要验证
- # check_val_every_n_epoch=None,
- limit_val_batches=0,
- devices=-1,
- benchmark=False,
- fast_dev_run=False,
- strategy = "auto" if torch.backends.mps.is_available() else DDPStrategy(
- process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
- ), # mps 不支持多节点训练
- precision=config["train"]["precision"],
- logger=logger,
- num_sanity_val_steps=0,
- callbacks=[ckpt_callback],
- )
- model: Text2SemanticLightningModule = Text2SemanticLightningModule(
- config, output_dir
- )
- data_module: Text2SemanticDataModule = Text2SemanticDataModule(
- config,
- train_semantic_path=config["train_semantic_path"],
- train_phoneme_path=config["train_phoneme_path"],
- # dev_semantic_path=args.dev_semantic_path,
- # dev_phoneme_path=args.dev_phoneme_path
- )
- try:
- # 使用正则表达式匹配文件名中的数字部分,并按数字大小进行排序
- newest_ckpt_name = get_newest_ckpt(os.listdir(ckpt_dir))
- ckpt_path = ckpt_dir / newest_ckpt_name
- except Exception:
- ckpt_path = None
- print("ckpt_path:", ckpt_path)
- trainer.fit(model, data_module, ckpt_path=ckpt_path)
- # srun --gpus-per-node=1 --ntasks-per-node=1 python train.py --path-to-configuration configurations/default.yaml
- if __name__ == "__main__":
- parser = argparse.ArgumentParser()
- parser.add_argument(
- "-c",
- "--config_file",
- type=str,
- default="configs/s1longer.yaml",
- help="path of config file",
- )
- # args for dataset
- # parser.add_argument('--train_semantic_path',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/6-name2semantic.tsv')
- # parser.add_argument('--train_phoneme_path', type=str, default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/2-name2text.txt')
- # parser.add_argument('--dev_semantic_path', type=str, default='dump_mix/semantic_dev.tsv')
- # parser.add_argument('--dev_phoneme_path', type=str, default='dump_mix/phoneme_dev.npy')
- # parser.add_argument('--output_dir',type=str,default='/data/docker/liujing04/gpt-vits/fine_tune_dataset/xuangou/logs_s1',help='directory to save the results')
- # parser.add_argument('--output_dir',type=str,default='/liujing04/gpt_logs/s1/xuangou_ft',help='directory to save the results')
- args = parser.parse_args()
- logging.info(str(args))
- main(args)
|