123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334 |
- from module.models_onnx import SynthesizerTrn, symbols
- from AR.models.t2s_lightning_module_onnx import Text2SemanticLightningModule
- import torch
- import torchaudio
- from torch import nn
- from feature_extractor import cnhubert
- cnhubert_base_path = "pretrained_models/chinese-hubert-base"
- cnhubert.cnhubert_base_path=cnhubert_base_path
- ssl_model = cnhubert.get_model()
- from text import cleaned_text_to_sequence
- import soundfile
- from my_utils import load_audio
- import os
- import json
- def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
- hann_window = torch.hann_window(win_size).to(
- dtype=y.dtype, device=y.device
- )
- y = torch.nn.functional.pad(
- y.unsqueeze(1),
- (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
- mode="reflect",
- )
- y = y.squeeze(1)
- spec = torch.stft(
- y,
- n_fft,
- hop_length=hop_size,
- win_length=win_size,
- window=hann_window,
- center=center,
- pad_mode="reflect",
- normalized=False,
- onesided=True,
- return_complex=False,
- )
- spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
- return spec
- class DictToAttrRecursive(dict):
- def __init__(self, input_dict):
- super().__init__(input_dict)
- for key, value in input_dict.items():
- if isinstance(value, dict):
- value = DictToAttrRecursive(value)
- self[key] = value
- setattr(self, key, value)
- def __getattr__(self, item):
- try:
- return self[item]
- except KeyError:
- raise AttributeError(f"Attribute {item} not found")
- def __setattr__(self, key, value):
- if isinstance(value, dict):
- value = DictToAttrRecursive(value)
- super(DictToAttrRecursive, self).__setitem__(key, value)
- super().__setattr__(key, value)
- def __delattr__(self, item):
- try:
- del self[item]
- except KeyError:
- raise AttributeError(f"Attribute {item} not found")
- class T2SEncoder(nn.Module):
- def __init__(self, t2s, vits):
- super().__init__()
- self.encoder = t2s.onnx_encoder
- self.vits = vits
-
- def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
- codes = self.vits.extract_latent(ssl_content)
- prompt_semantic = codes[0, 0]
- bert = torch.cat([ref_bert.transpose(0, 1), text_bert.transpose(0, 1)], 1)
- all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
- bert = bert.unsqueeze(0)
- prompt = prompt_semantic.unsqueeze(0)
- return self.encoder(all_phoneme_ids, bert), prompt
- class T2SModel(nn.Module):
- def __init__(self, t2s_path, vits_model):
- super().__init__()
- dict_s1 = torch.load(t2s_path, map_location="cpu")
- self.config = dict_s1["config"]
- self.t2s_model = Text2SemanticLightningModule(self.config, "ojbk", is_train=False)
- self.t2s_model.load_state_dict(dict_s1["weight"])
- self.t2s_model.eval()
- self.vits_model = vits_model.vq_model
- self.hz = 50
- self.max_sec = self.config["data"]["max_sec"]
- self.t2s_model.model.top_k = torch.LongTensor([self.config["inference"]["top_k"]])
- self.t2s_model.model.early_stop_num = torch.LongTensor([self.hz * self.max_sec])
- self.t2s_model = self.t2s_model.model
- self.t2s_model.init_onnx()
- self.onnx_encoder = T2SEncoder(self.t2s_model, self.vits_model)
- self.first_stage_decoder = self.t2s_model.first_stage_decoder
- self.stage_decoder = self.t2s_model.stage_decoder
- #self.t2s_model = torch.jit.script(self.t2s_model)
- def forward(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content):
- early_stop_num = self.t2s_model.early_stop_num
- #[1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
- x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
- prefix_len = prompts.shape[1]
- #[1,N,512] [1,N]
- y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
- stop = False
- for idx in range(1, 1500):
- #[1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
- enco = self.stage_decoder(y, k, v, y_emb, x_example)
- y, k, v, y_emb, logits, samples = enco
- if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
- stop = True
- if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
- stop = True
- if stop:
- break
- y[0, -1] = 0
- return y[:, -idx:].unsqueeze(0)
- def export(self, ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name, dynamo=False):
- #self.onnx_encoder = torch.jit.script(self.onnx_encoder)
- if dynamo:
- export_options = torch.onnx.ExportOptions(dynamic_shapes=True)
- onnx_encoder_export_output = torch.onnx.dynamo_export(
- self.onnx_encoder,
- (ref_seq, text_seq, ref_bert, text_bert, ssl_content),
- export_options=export_options
- )
- onnx_encoder_export_output.save(f"onnx/{project_name}/{project_name}_t2s_encoder.onnx")
- return
- torch.onnx.export(
- self.onnx_encoder,
- (ref_seq, text_seq, ref_bert, text_bert, ssl_content),
- f"onnx/{project_name}/{project_name}_t2s_encoder.onnx",
- input_names=["ref_seq", "text_seq", "ref_bert", "text_bert", "ssl_content"],
- output_names=["x", "prompts"],
- dynamic_axes={
- "ref_seq": {1 : "ref_length"},
- "text_seq": {1 : "text_length"},
- "ref_bert": {0 : "ref_length"},
- "text_bert": {0 : "text_length"},
- "ssl_content": {2 : "ssl_length"},
- },
- opset_version=16
- )
- x, prompts = self.onnx_encoder(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
- torch.onnx.export(
- self.first_stage_decoder,
- (x, prompts),
- f"onnx/{project_name}/{project_name}_t2s_fsdec.onnx",
- input_names=["x", "prompts"],
- output_names=["y", "k", "v", "y_emb", "x_example"],
- dynamic_axes={
- "x": {1 : "x_length"},
- "prompts": {1 : "prompts_length"},
- },
- verbose=False,
- opset_version=16
- )
- y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
- torch.onnx.export(
- self.stage_decoder,
- (y, k, v, y_emb, x_example),
- f"onnx/{project_name}/{project_name}_t2s_sdec.onnx",
- input_names=["iy", "ik", "iv", "iy_emb", "ix_example"],
- output_names=["y", "k", "v", "y_emb", "logits", "samples"],
- dynamic_axes={
- "iy": {1 : "iy_length"},
- "ik": {1 : "ik_length"},
- "iv": {1 : "iv_length"},
- "iy_emb": {1 : "iy_emb_length"},
- "ix_example": {1 : "ix_example_length"},
- },
- verbose=False,
- opset_version=16
- )
- class VitsModel(nn.Module):
- def __init__(self, vits_path):
- super().__init__()
- dict_s2 = torch.load(vits_path,map_location="cpu")
- self.hps = dict_s2["config"]
- self.hps = DictToAttrRecursive(self.hps)
- self.hps.model.semantic_frame_rate = "25hz"
- self.vq_model = SynthesizerTrn(
- self.hps.data.filter_length // 2 + 1,
- self.hps.train.segment_size // self.hps.data.hop_length,
- n_speakers=self.hps.data.n_speakers,
- **self.hps.model
- )
- self.vq_model.eval()
- self.vq_model.load_state_dict(dict_s2["weight"], strict=False)
-
- def forward(self, text_seq, pred_semantic, ref_audio):
- refer = spectrogram_torch(
- ref_audio,
- self.hps.data.filter_length,
- self.hps.data.sampling_rate,
- self.hps.data.hop_length,
- self.hps.data.win_length,
- center=False
- )
- return self.vq_model(pred_semantic, text_seq, refer)[0, 0]
- class GptSoVits(nn.Module):
- def __init__(self, vits, t2s):
- super().__init__()
- self.vits = vits
- self.t2s = t2s
-
- def forward(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, debug=False):
- pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
- audio = self.vits(text_seq, pred_semantic, ref_audio)
- if debug:
- import onnxruntime
- sess = onnxruntime.InferenceSession("onnx/koharu/koharu_vits.onnx", providers=["CPU"])
- audio1 = sess.run(None, {
- "text_seq" : text_seq.detach().cpu().numpy(),
- "pred_semantic" : pred_semantic.detach().cpu().numpy(),
- "ref_audio" : ref_audio.detach().cpu().numpy()
- })
- return audio, audio1
- return audio
- def export(self, ref_seq, text_seq, ref_bert, text_bert, ref_audio, ssl_content, project_name):
- self.t2s.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content, project_name)
- pred_semantic = self.t2s(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
- torch.onnx.export(
- self.vits,
- (text_seq, pred_semantic, ref_audio),
- f"onnx/{project_name}/{project_name}_vits.onnx",
- input_names=["text_seq", "pred_semantic", "ref_audio"],
- output_names=["audio"],
- dynamic_axes={
- "text_seq": {1 : "text_length"},
- "pred_semantic": {2 : "pred_length"},
- "ref_audio": {1 : "audio_length"},
- },
- opset_version=17,
- verbose=False
- )
- class SSLModel(nn.Module):
- def __init__(self):
- super().__init__()
- self.ssl = ssl_model
- def forward(self, ref_audio_16k):
- return self.ssl.model(ref_audio_16k)["last_hidden_state"].transpose(1, 2)
- def export(vits_path, gpt_path, project_name):
- vits = VitsModel(vits_path)
- gpt = T2SModel(gpt_path, vits)
- gpt_sovits = GptSoVits(vits, gpt)
- ssl = SSLModel()
- ref_seq = torch.LongTensor([cleaned_text_to_sequence(["n", "i2", "h", "ao3", ",", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
- text_seq = torch.LongTensor([cleaned_text_to_sequence(["w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4", "w", "o3", "sh", "i4", "b", "ai2", "y", "e4"])])
- ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
- text_bert = torch.randn((text_seq.shape[1], 1024)).float()
- ref_audio = torch.randn((1, 48000 * 5)).float()
- # ref_audio = torch.tensor([load_audio("rec.wav", 48000)]).float()
- ref_audio_16k = torchaudio.functional.resample(ref_audio,48000,16000).float()
- ref_audio_sr = torchaudio.functional.resample(ref_audio,48000,vits.hps.data.sampling_rate).float()
- try:
- os.mkdir(f"onnx/{project_name}")
- except:
- pass
- ssl_content = ssl(ref_audio_16k).float()
-
- debug = False
- if debug:
- a, b = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, debug=debug)
- soundfile.write("out1.wav", a.cpu().detach().numpy(), vits.hps.data.sampling_rate)
- soundfile.write("out2.wav", b[0], vits.hps.data.sampling_rate)
- return
-
- a = gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content).detach().cpu().numpy()
- soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
- gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ref_audio_sr, ssl_content, project_name)
- MoeVSConf = {
- "Folder" : f"{project_name}",
- "Name" : f"{project_name}",
- "Type" : "GPT-SoVits",
- "Rate" : vits.hps.data.sampling_rate,
- "NumLayers": gpt.t2s_model.num_layers,
- "EmbeddingDim": gpt.t2s_model.embedding_dim,
- "Dict": "BasicDict",
- "BertPath": "chinese-roberta-wwm-ext-large",
- "Symbol": symbols,
- "AddBlank": False
- }
-
- MoeVSConfJson = json.dumps(MoeVSConf)
- with open(f"onnx/{project_name}.json", 'w') as MoeVsConfFile:
- json.dump(MoeVSConf, MoeVsConfFile, indent = 4)
- if __name__ == "__main__":
- try:
- os.mkdir("onnx")
- except:
- pass
- gpt_path = "GPT_weights/nahida-e25.ckpt"
- vits_path = "SoVITS_weights/nahida_e30_s3930.pth"
- exp_path = "nahida"
- export(vits_path, gpt_path, exp_path)
- # soundfile.write("out.wav", a, vits.hps.data.sampling_rate)
|