123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923 |
- import math
- import numpy as np
- import torch
- from torch import nn
- from torch.nn import functional as F
- from torch.nn import Conv1d
- from torch.nn.utils import weight_norm, remove_weight_norm
- from module import commons
- from module.commons import init_weights, get_padding
- from module.transforms import piecewise_rational_quadratic_transform
- import torch.distributions as D
- LRELU_SLOPE = 0.1
- class LayerNorm(nn.Module):
- def __init__(self, channels, eps=1e-5):
- super().__init__()
- self.channels = channels
- self.eps = eps
- self.gamma = nn.Parameter(torch.ones(channels))
- self.beta = nn.Parameter(torch.zeros(channels))
- def forward(self, x):
- x = x.transpose(1, -1)
- x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
- return x.transpose(1, -1)
- class ConvReluNorm(nn.Module):
- def __init__(
- self,
- in_channels,
- hidden_channels,
- out_channels,
- kernel_size,
- n_layers,
- p_dropout,
- ):
- super().__init__()
- self.in_channels = in_channels
- self.hidden_channels = hidden_channels
- self.out_channels = out_channels
- self.kernel_size = kernel_size
- self.n_layers = n_layers
- self.p_dropout = p_dropout
- assert n_layers > 1, "Number of layers should be larger than 0."
- self.conv_layers = nn.ModuleList()
- self.norm_layers = nn.ModuleList()
- self.conv_layers.append(
- nn.Conv1d(
- in_channels, hidden_channels, kernel_size, padding=kernel_size // 2
- )
- )
- self.norm_layers.append(LayerNorm(hidden_channels))
- self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
- for _ in range(n_layers - 1):
- self.conv_layers.append(
- nn.Conv1d(
- hidden_channels,
- hidden_channels,
- kernel_size,
- padding=kernel_size // 2,
- )
- )
- self.norm_layers.append(LayerNorm(hidden_channels))
- self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
- self.proj.weight.data.zero_()
- self.proj.bias.data.zero_()
- def forward(self, x, x_mask):
- x_org = x
- for i in range(self.n_layers):
- x = self.conv_layers[i](x * x_mask)
- x = self.norm_layers[i](x)
- x = self.relu_drop(x)
- x = x_org + self.proj(x)
- return x * x_mask
- class DDSConv(nn.Module):
- """
- Dialted and Depth-Separable Convolution
- """
- def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
- super().__init__()
- self.channels = channels
- self.kernel_size = kernel_size
- self.n_layers = n_layers
- self.p_dropout = p_dropout
- self.drop = nn.Dropout(p_dropout)
- self.convs_sep = nn.ModuleList()
- self.convs_1x1 = nn.ModuleList()
- self.norms_1 = nn.ModuleList()
- self.norms_2 = nn.ModuleList()
- for i in range(n_layers):
- dilation = kernel_size**i
- padding = (kernel_size * dilation - dilation) // 2
- self.convs_sep.append(
- nn.Conv1d(
- channels,
- channels,
- kernel_size,
- groups=channels,
- dilation=dilation,
- padding=padding,
- )
- )
- self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
- self.norms_1.append(LayerNorm(channels))
- self.norms_2.append(LayerNorm(channels))
- def forward(self, x, x_mask, g=None):
- if g is not None:
- x = x + g
- for i in range(self.n_layers):
- y = self.convs_sep[i](x * x_mask)
- y = self.norms_1[i](y)
- y = F.gelu(y)
- y = self.convs_1x1[i](y)
- y = self.norms_2[i](y)
- y = F.gelu(y)
- y = self.drop(y)
- x = x + y
- return x * x_mask
- class WN(torch.nn.Module):
- def __init__(
- self,
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- gin_channels=0,
- p_dropout=0,
- ):
- super(WN, self).__init__()
- assert kernel_size % 2 == 1
- self.hidden_channels = hidden_channels
- self.kernel_size = (kernel_size,)
- self.dilation_rate = dilation_rate
- self.n_layers = n_layers
- self.gin_channels = gin_channels
- self.p_dropout = p_dropout
- self.in_layers = torch.nn.ModuleList()
- self.res_skip_layers = torch.nn.ModuleList()
- self.drop = nn.Dropout(p_dropout)
- if gin_channels != 0:
- cond_layer = torch.nn.Conv1d(
- gin_channels, 2 * hidden_channels * n_layers, 1
- )
- self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
- for i in range(n_layers):
- dilation = dilation_rate**i
- padding = int((kernel_size * dilation - dilation) / 2)
- in_layer = torch.nn.Conv1d(
- hidden_channels,
- 2 * hidden_channels,
- kernel_size,
- dilation=dilation,
- padding=padding,
- )
- in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
- self.in_layers.append(in_layer)
- # last one is not necessary
- if i < n_layers - 1:
- res_skip_channels = 2 * hidden_channels
- else:
- res_skip_channels = hidden_channels
- res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
- res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
- self.res_skip_layers.append(res_skip_layer)
- def forward(self, x, x_mask, g=None, **kwargs):
- output = torch.zeros_like(x)
- n_channels_tensor = torch.IntTensor([self.hidden_channels])
- if g is not None:
- g = self.cond_layer(g)
- for i in range(self.n_layers):
- x_in = self.in_layers[i](x)
- if g is not None:
- cond_offset = i * 2 * self.hidden_channels
- g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
- else:
- g_l = torch.zeros_like(x_in)
- acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
- acts = self.drop(acts)
- res_skip_acts = self.res_skip_layers[i](acts)
- if i < self.n_layers - 1:
- res_acts = res_skip_acts[:, : self.hidden_channels, :]
- x = (x + res_acts) * x_mask
- output = output + res_skip_acts[:, self.hidden_channels :, :]
- else:
- output = output + res_skip_acts
- return output * x_mask
- def remove_weight_norm(self):
- if self.gin_channels != 0:
- torch.nn.utils.remove_weight_norm(self.cond_layer)
- for l in self.in_layers:
- torch.nn.utils.remove_weight_norm(l)
- for l in self.res_skip_layers:
- torch.nn.utils.remove_weight_norm(l)
- class ResBlock1(torch.nn.Module):
- def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
- super(ResBlock1, self).__init__()
- self.convs1 = nn.ModuleList(
- [
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=dilation[0],
- padding=get_padding(kernel_size, dilation[0]),
- )
- ),
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=dilation[1],
- padding=get_padding(kernel_size, dilation[1]),
- )
- ),
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=dilation[2],
- padding=get_padding(kernel_size, dilation[2]),
- )
- ),
- ]
- )
- self.convs1.apply(init_weights)
- self.convs2 = nn.ModuleList(
- [
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=1,
- padding=get_padding(kernel_size, 1),
- )
- ),
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=1,
- padding=get_padding(kernel_size, 1),
- )
- ),
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=1,
- padding=get_padding(kernel_size, 1),
- )
- ),
- ]
- )
- self.convs2.apply(init_weights)
- def forward(self, x, x_mask=None):
- for c1, c2 in zip(self.convs1, self.convs2):
- xt = F.leaky_relu(x, LRELU_SLOPE)
- if x_mask is not None:
- xt = xt * x_mask
- xt = c1(xt)
- xt = F.leaky_relu(xt, LRELU_SLOPE)
- if x_mask is not None:
- xt = xt * x_mask
- xt = c2(xt)
- x = xt + x
- if x_mask is not None:
- x = x * x_mask
- return x
- def remove_weight_norm(self):
- for l in self.convs1:
- remove_weight_norm(l)
- for l in self.convs2:
- remove_weight_norm(l)
- class ResBlock2(torch.nn.Module):
- def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
- super(ResBlock2, self).__init__()
- self.convs = nn.ModuleList(
- [
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=dilation[0],
- padding=get_padding(kernel_size, dilation[0]),
- )
- ),
- weight_norm(
- Conv1d(
- channels,
- channels,
- kernel_size,
- 1,
- dilation=dilation[1],
- padding=get_padding(kernel_size, dilation[1]),
- )
- ),
- ]
- )
- self.convs.apply(init_weights)
- def forward(self, x, x_mask=None):
- for c in self.convs:
- xt = F.leaky_relu(x, LRELU_SLOPE)
- if x_mask is not None:
- xt = xt * x_mask
- xt = c(xt)
- x = xt + x
- if x_mask is not None:
- x = x * x_mask
- return x
- def remove_weight_norm(self):
- for l in self.convs:
- remove_weight_norm(l)
- class Log(nn.Module):
- def forward(self, x, x_mask, reverse=False, **kwargs):
- if not reverse:
- y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
- logdet = torch.sum(-y, [1, 2])
- return y, logdet
- else:
- x = torch.exp(x) * x_mask
- return x
- class Flip(nn.Module):
- def forward(self, x, *args, reverse=False, **kwargs):
- x = torch.flip(x, [1])
- if not reverse:
- logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
- return x, logdet
- else:
- return x
- class ElementwiseAffine(nn.Module):
- def __init__(self, channels):
- super().__init__()
- self.channels = channels
- self.m = nn.Parameter(torch.zeros(channels, 1))
- self.logs = nn.Parameter(torch.zeros(channels, 1))
- def forward(self, x, x_mask, reverse=False, **kwargs):
- if not reverse:
- y = self.m + torch.exp(self.logs) * x
- y = y * x_mask
- logdet = torch.sum(self.logs * x_mask, [1, 2])
- return y, logdet
- else:
- x = (x - self.m) * torch.exp(-self.logs) * x_mask
- return x
- class ResidualCouplingLayer(nn.Module):
- def __init__(
- self,
- channels,
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- p_dropout=0,
- gin_channels=0,
- mean_only=False,
- ):
- assert channels % 2 == 0, "channels should be divisible by 2"
- super().__init__()
- self.channels = channels
- self.hidden_channels = hidden_channels
- self.kernel_size = kernel_size
- self.dilation_rate = dilation_rate
- self.n_layers = n_layers
- self.half_channels = channels // 2
- self.mean_only = mean_only
- self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
- self.enc = WN(
- hidden_channels,
- kernel_size,
- dilation_rate,
- n_layers,
- p_dropout=p_dropout,
- gin_channels=gin_channels,
- )
- self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
- self.post.weight.data.zero_()
- self.post.bias.data.zero_()
- def forward(self, x, x_mask, g=None, reverse=False):
- x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
- h = self.pre(x0) * x_mask
- h = self.enc(h, x_mask, g=g)
- stats = self.post(h) * x_mask
- if not self.mean_only:
- m, logs = torch.split(stats, [self.half_channels] * 2, 1)
- else:
- m = stats
- logs = torch.zeros_like(m)
- if not reverse:
- x1 = m + x1 * torch.exp(logs) * x_mask
- x = torch.cat([x0, x1], 1)
- logdet = torch.sum(logs, [1, 2])
- return x, logdet
- else:
- x1 = (x1 - m) * torch.exp(-logs) * x_mask
- x = torch.cat([x0, x1], 1)
- return x
- class ConvFlow(nn.Module):
- def __init__(
- self,
- in_channels,
- filter_channels,
- kernel_size,
- n_layers,
- num_bins=10,
- tail_bound=5.0,
- ):
- super().__init__()
- self.in_channels = in_channels
- self.filter_channels = filter_channels
- self.kernel_size = kernel_size
- self.n_layers = n_layers
- self.num_bins = num_bins
- self.tail_bound = tail_bound
- self.half_channels = in_channels // 2
- self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
- self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
- self.proj = nn.Conv1d(
- filter_channels, self.half_channels * (num_bins * 3 - 1), 1
- )
- self.proj.weight.data.zero_()
- self.proj.bias.data.zero_()
- def forward(self, x, x_mask, g=None, reverse=False):
- x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
- h = self.pre(x0)
- h = self.convs(h, x_mask, g=g)
- h = self.proj(h) * x_mask
- b, c, t = x0.shape
- h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
- unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
- unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(
- self.filter_channels
- )
- unnormalized_derivatives = h[..., 2 * self.num_bins :]
- x1, logabsdet = piecewise_rational_quadratic_transform(
- x1,
- unnormalized_widths,
- unnormalized_heights,
- unnormalized_derivatives,
- inverse=reverse,
- tails="linear",
- tail_bound=self.tail_bound,
- )
- x = torch.cat([x0, x1], 1) * x_mask
- logdet = torch.sum(logabsdet * x_mask, [1, 2])
- if not reverse:
- return x, logdet
- else:
- return x
- class LinearNorm(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- bias=True,
- spectral_norm=False,
- ):
- super(LinearNorm, self).__init__()
- self.fc = nn.Linear(in_channels, out_channels, bias)
- if spectral_norm:
- self.fc = nn.utils.spectral_norm(self.fc)
- def forward(self, input):
- out = self.fc(input)
- return out
- class Mish(nn.Module):
- def __init__(self):
- super(Mish, self).__init__()
- def forward(self, x):
- return x * torch.tanh(F.softplus(x))
- class Conv1dGLU(nn.Module):
- """
- Conv1d + GLU(Gated Linear Unit) with residual connection.
- For GLU refer to https://arxiv.org/abs/1612.08083 paper.
- """
- def __init__(self, in_channels, out_channels, kernel_size, dropout):
- super(Conv1dGLU, self).__init__()
- self.out_channels = out_channels
- self.conv1 = ConvNorm(in_channels, 2 * out_channels, kernel_size=kernel_size)
- self.dropout = nn.Dropout(dropout)
- def forward(self, x):
- residual = x
- x = self.conv1(x)
- x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
- x = x1 * torch.sigmoid(x2)
- x = residual + self.dropout(x)
- return x
- class ConvNorm(nn.Module):
- def __init__(
- self,
- in_channels,
- out_channels,
- kernel_size=1,
- stride=1,
- padding=None,
- dilation=1,
- bias=True,
- spectral_norm=False,
- ):
- super(ConvNorm, self).__init__()
- if padding is None:
- assert kernel_size % 2 == 1
- padding = int(dilation * (kernel_size - 1) / 2)
- self.conv = torch.nn.Conv1d(
- in_channels,
- out_channels,
- kernel_size=kernel_size,
- stride=stride,
- padding=padding,
- dilation=dilation,
- bias=bias,
- )
- if spectral_norm:
- self.conv = nn.utils.spectral_norm(self.conv)
- def forward(self, input):
- out = self.conv(input)
- return out
- class MultiHeadAttention(nn.Module):
- """Multi-Head Attention module"""
- def __init__(self, n_head, d_model, d_k, d_v, dropout=0.0, spectral_norm=False):
- super().__init__()
- self.n_head = n_head
- self.d_k = d_k
- self.d_v = d_v
- self.w_qs = nn.Linear(d_model, n_head * d_k)
- self.w_ks = nn.Linear(d_model, n_head * d_k)
- self.w_vs = nn.Linear(d_model, n_head * d_v)
- self.attention = ScaledDotProductAttention(
- temperature=np.power(d_model, 0.5), dropout=dropout
- )
- self.fc = nn.Linear(n_head * d_v, d_model)
- self.dropout = nn.Dropout(dropout)
- if spectral_norm:
- self.w_qs = nn.utils.spectral_norm(self.w_qs)
- self.w_ks = nn.utils.spectral_norm(self.w_ks)
- self.w_vs = nn.utils.spectral_norm(self.w_vs)
- self.fc = nn.utils.spectral_norm(self.fc)
- def forward(self, x, mask=None):
- d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
- sz_b, len_x, _ = x.size()
- residual = x
- q = self.w_qs(x).view(sz_b, len_x, n_head, d_k)
- k = self.w_ks(x).view(sz_b, len_x, n_head, d_k)
- v = self.w_vs(x).view(sz_b, len_x, n_head, d_v)
- q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lq x dk
- k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lk x dk
- v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_v) # (n*b) x lv x dv
- if mask is not None:
- slf_mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
- else:
- slf_mask = None
- output, attn = self.attention(q, k, v, mask=slf_mask)
- output = output.view(n_head, sz_b, len_x, d_v)
- output = (
- output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_x, -1)
- ) # b x lq x (n*dv)
- output = self.fc(output)
- output = self.dropout(output) + residual
- return output, attn
- class ScaledDotProductAttention(nn.Module):
- """Scaled Dot-Product Attention"""
- def __init__(self, temperature, dropout):
- super().__init__()
- self.temperature = temperature
- self.softmax = nn.Softmax(dim=2)
- self.dropout = nn.Dropout(dropout)
- def forward(self, q, k, v, mask=None):
- attn = torch.bmm(q, k.transpose(1, 2))
- attn = attn / self.temperature
- if mask is not None:
- attn = attn.masked_fill(mask, -np.inf)
- attn = self.softmax(attn)
- p_attn = self.dropout(attn)
- output = torch.bmm(p_attn, v)
- return output, attn
- class MelStyleEncoder(nn.Module):
- """MelStyleEncoder"""
- def __init__(
- self,
- n_mel_channels=80,
- style_hidden=128,
- style_vector_dim=256,
- style_kernel_size=5,
- style_head=2,
- dropout=0.1,
- ):
- super(MelStyleEncoder, self).__init__()
- self.in_dim = n_mel_channels
- self.hidden_dim = style_hidden
- self.out_dim = style_vector_dim
- self.kernel_size = style_kernel_size
- self.n_head = style_head
- self.dropout = dropout
- self.spectral = nn.Sequential(
- LinearNorm(self.in_dim, self.hidden_dim),
- Mish(),
- nn.Dropout(self.dropout),
- LinearNorm(self.hidden_dim, self.hidden_dim),
- Mish(),
- nn.Dropout(self.dropout),
- )
- self.temporal = nn.Sequential(
- Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
- Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
- )
- self.slf_attn = MultiHeadAttention(
- self.n_head,
- self.hidden_dim,
- self.hidden_dim // self.n_head,
- self.hidden_dim // self.n_head,
- self.dropout,
- )
- self.fc = LinearNorm(self.hidden_dim, self.out_dim)
- def temporal_avg_pool(self, x, mask=None):
- if mask is None:
- out = torch.mean(x, dim=1)
- else:
- len_ = (~mask).sum(dim=1).unsqueeze(1)
- x = x.masked_fill(mask.unsqueeze(-1), 0)
- x = x.sum(dim=1)
- out = torch.div(x, len_)
- return out
- def forward(self, x, mask=None):
- x = x.transpose(1, 2)
- if mask is not None:
- mask = (mask.int() == 0).squeeze(1)
- max_len = x.shape[1]
- slf_attn_mask = (
- mask.unsqueeze(1).expand(-1, max_len, -1) if mask is not None else None
- )
- # spectral
- x = self.spectral(x)
- # temporal
- x = x.transpose(1, 2)
- x = self.temporal(x)
- x = x.transpose(1, 2)
- # self-attention
- if mask is not None:
- x = x.masked_fill(mask.unsqueeze(-1), 0)
- x, _ = self.slf_attn(x, mask=slf_attn_mask)
- # fc
- x = self.fc(x)
- # temoral average pooling
- w = self.temporal_avg_pool(x, mask=mask)
- return w.unsqueeze(-1)
- class MelStyleEncoderVAE(nn.Module):
- def __init__(self, spec_channels, z_latent_dim, emb_dim):
- super().__init__()
- self.ref_encoder = MelStyleEncoder(spec_channels, style_vector_dim=emb_dim)
- self.fc1 = nn.Linear(emb_dim, z_latent_dim)
- self.fc2 = nn.Linear(emb_dim, z_latent_dim)
- self.fc3 = nn.Linear(z_latent_dim, emb_dim)
- self.z_latent_dim = z_latent_dim
- def reparameterize(self, mu, logvar):
- if self.training:
- std = torch.exp(0.5 * logvar)
- eps = torch.randn_like(std)
- return eps.mul(std).add_(mu)
- else:
- return mu
- def forward(self, inputs, mask=None):
- enc_out = self.ref_encoder(inputs.squeeze(-1), mask).squeeze(-1)
- mu = self.fc1(enc_out)
- logvar = self.fc2(enc_out)
- posterior = D.Normal(mu, torch.exp(logvar))
- kl_divergence = D.kl_divergence(
- posterior, D.Normal(torch.zeros_like(mu), torch.ones_like(logvar))
- )
- loss_kl = kl_divergence.mean()
- z = posterior.rsample()
- style_embed = self.fc3(z)
- return style_embed.unsqueeze(-1), loss_kl
- def infer(self, inputs=None, random_sample=False, manual_latent=None):
- if manual_latent is None:
- if random_sample:
- dev = next(self.parameters()).device
- posterior = D.Normal(
- torch.zeros(1, self.z_latent_dim, device=dev),
- torch.ones(1, self.z_latent_dim, device=dev),
- )
- z = posterior.rsample()
- else:
- enc_out = self.ref_encoder(inputs.transpose(1, 2))
- mu = self.fc1(enc_out)
- z = mu
- else:
- z = manual_latent
- style_embed = self.fc3(z)
- return style_embed.unsqueeze(-1), z
- class ActNorm(nn.Module):
- def __init__(self, channels, ddi=False, **kwargs):
- super().__init__()
- self.channels = channels
- self.initialized = not ddi
- self.logs = nn.Parameter(torch.zeros(1, channels, 1))
- self.bias = nn.Parameter(torch.zeros(1, channels, 1))
- def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
- if x_mask is None:
- x_mask = torch.ones(x.size(0), 1, x.size(2)).to(
- device=x.device, dtype=x.dtype
- )
- x_len = torch.sum(x_mask, [1, 2])
- if not self.initialized:
- self.initialize(x, x_mask)
- self.initialized = True
- if reverse:
- z = (x - self.bias) * torch.exp(-self.logs) * x_mask
- logdet = None
- return z
- else:
- z = (self.bias + torch.exp(self.logs) * x) * x_mask
- logdet = torch.sum(self.logs) * x_len # [b]
- return z, logdet
- def store_inverse(self):
- pass
- def set_ddi(self, ddi):
- self.initialized = not ddi
- def initialize(self, x, x_mask):
- with torch.no_grad():
- denom = torch.sum(x_mask, [0, 2])
- m = torch.sum(x * x_mask, [0, 2]) / denom
- m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
- v = m_sq - (m**2)
- logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
- bias_init = (
- (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
- )
- logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)
- self.bias.data.copy_(bias_init)
- self.logs.data.copy_(logs_init)
- class InvConvNear(nn.Module):
- def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
- super().__init__()
- assert n_split % 2 == 0
- self.channels = channels
- self.n_split = n_split
- self.no_jacobian = no_jacobian
- w_init = torch.linalg.qr(
- torch.FloatTensor(self.n_split, self.n_split).normal_()
- )[0]
- if torch.det(w_init) < 0:
- w_init[:, 0] = -1 * w_init[:, 0]
- self.weight = nn.Parameter(w_init)
- def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
- b, c, t = x.size()
- assert c % self.n_split == 0
- if x_mask is None:
- x_mask = 1
- x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
- else:
- x_len = torch.sum(x_mask, [1, 2])
- x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
- x = (
- x.permute(0, 1, 3, 2, 4)
- .contiguous()
- .view(b, self.n_split, c // self.n_split, t)
- )
- if reverse:
- if hasattr(self, "weight_inv"):
- weight = self.weight_inv
- else:
- weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
- logdet = None
- else:
- weight = self.weight
- if self.no_jacobian:
- logdet = 0
- else:
- logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b]
- weight = weight.view(self.n_split, self.n_split, 1, 1)
- z = F.conv2d(x, weight)
- z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
- z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
- if reverse:
- return z
- else:
- return z, logdet
- def store_inverse(self):
- self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
|