123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153 |
- import math
- import os
- import random
- import torch
- from torch import nn
- import torch.nn.functional as F
- import torch.utils.data
- import numpy as np
- import librosa
- import librosa.util as librosa_util
- from librosa.util import normalize, pad_center, tiny
- from scipy.signal import get_window
- from scipy.io.wavfile import read
- from librosa.filters import mel as librosa_mel_fn
- MAX_WAV_VALUE = 32768.0
- def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
- """
- PARAMS
- ------
- C: compression factor
- """
- return torch.log(torch.clamp(x, min=clip_val) * C)
- def dynamic_range_decompression_torch(x, C=1):
- """
- PARAMS
- ------
- C: compression factor used to compress
- """
- return torch.exp(x) / C
- def spectral_normalize_torch(magnitudes):
- output = dynamic_range_compression_torch(magnitudes)
- return output
- def spectral_de_normalize_torch(magnitudes):
- output = dynamic_range_decompression_torch(magnitudes)
- return output
- mel_basis = {}
- hann_window = {}
- def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
- if torch.min(y) < -1.0:
- print("min value is ", torch.min(y))
- if torch.max(y) > 1.0:
- print("max value is ", torch.max(y))
- global hann_window
- dtype_device = str(y.dtype) + "_" + str(y.device)
- wnsize_dtype_device = str(win_size) + "_" + dtype_device
- if wnsize_dtype_device not in hann_window:
- hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
- dtype=y.dtype, device=y.device
- )
- y = torch.nn.functional.pad(
- y.unsqueeze(1),
- (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
- mode="reflect",
- )
- y = y.squeeze(1)
- spec = torch.stft(
- y,
- n_fft,
- hop_length=hop_size,
- win_length=win_size,
- window=hann_window[wnsize_dtype_device],
- center=center,
- pad_mode="reflect",
- normalized=False,
- onesided=True,
- return_complex=False,
- )
- spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
- return spec
- def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
- global mel_basis
- dtype_device = str(spec.dtype) + "_" + str(spec.device)
- fmax_dtype_device = str(fmax) + "_" + dtype_device
- if fmax_dtype_device not in mel_basis:
- mel = librosa_mel_fn(
- sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
- )
- mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
- dtype=spec.dtype, device=spec.device
- )
- spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
- spec = spectral_normalize_torch(spec)
- return spec
- def mel_spectrogram_torch(
- y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False
- ):
- if torch.min(y) < -1.0:
- print("min value is ", torch.min(y))
- if torch.max(y) > 1.0:
- print("max value is ", torch.max(y))
- global mel_basis, hann_window
- dtype_device = str(y.dtype) + "_" + str(y.device)
- fmax_dtype_device = str(fmax) + "_" + dtype_device
- wnsize_dtype_device = str(win_size) + "_" + dtype_device
- if fmax_dtype_device not in mel_basis:
- mel = librosa_mel_fn(
- sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax
- )
- mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(
- dtype=y.dtype, device=y.device
- )
- if wnsize_dtype_device not in hann_window:
- hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(
- dtype=y.dtype, device=y.device
- )
- y = torch.nn.functional.pad(
- y.unsqueeze(1),
- (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)),
- mode="reflect",
- )
- y = y.squeeze(1)
- spec = torch.stft(
- y,
- n_fft,
- hop_length=hop_size,
- win_length=win_size,
- window=hann_window[wnsize_dtype_device],
- center=center,
- pad_mode="reflect",
- normalized=False,
- onesided=True,
- return_complex=False,
- )
- spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
- spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
- spec = spectral_normalize_torch(spec)
- return spec
|