123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332 |
- import time
- import logging
- import os
- import random
- import traceback
- import numpy as np
- import torch
- import torch.utils.data
- from tqdm import tqdm
- from module import commons
- from module.mel_processing import spectrogram_torch
- from text import cleaned_text_to_sequence
- from utils import load_wav_to_torch, load_filepaths_and_text
- import torch.nn.functional as F
- from functools import lru_cache
- import requests
- from scipy.io import wavfile
- from io import BytesIO
- from my_utils import load_audio
- # ZeroDivisionError fixed by Tybost (https://github.com/RVC-Boss/GPT-SoVITS/issues/79)
- class TextAudioSpeakerLoader(torch.utils.data.Dataset):
- """
- 1) loads audio, speaker_id, text pairs
- 2) normalizes text and converts them to sequences of integers
- 3) computes spectrograms from audio files.
- """
- def __init__(self, hparams, val=False):
- exp_dir = hparams.exp_dir
- self.path2 = "%s/2-name2text.txt" % exp_dir
- self.path4 = "%s/4-cnhubert" % exp_dir
- self.path5 = "%s/5-wav32k" % exp_dir
- assert os.path.exists(self.path2)
- assert os.path.exists(self.path4)
- assert os.path.exists(self.path5)
- names4 = set([name[:-3] for name in list(os.listdir(self.path4))]) # 去除.pt后缀
- names5 = set(os.listdir(self.path5))
- self.phoneme_data = {}
- with open(self.path2, "r", encoding="utf8") as f:
- lines = f.read().strip("\n").split("\n")
- for line in lines:
- tmp = line.split("\t")
- if (len(tmp) != 4):
- continue
- self.phoneme_data[tmp[0]] = [tmp[1]]
- self.audiopaths_sid_text = list(set(self.phoneme_data) & names4 & names5)
- tmp = self.audiopaths_sid_text
- leng = len(tmp)
- min_num = 100
- if (leng < min_num):
- self.audiopaths_sid_text = []
- for _ in range(max(2, int(min_num / leng))):
- self.audiopaths_sid_text += tmp
- self.max_wav_value = hparams.max_wav_value
- self.sampling_rate = hparams.sampling_rate
- self.filter_length = hparams.filter_length
- self.hop_length = hparams.hop_length
- self.win_length = hparams.win_length
- self.sampling_rate = hparams.sampling_rate
- self.val = val
- random.seed(1234)
- random.shuffle(self.audiopaths_sid_text)
- print("phoneme_data_len:", len(self.phoneme_data.keys()))
- print("wav_data_len:", len(self.audiopaths_sid_text))
- audiopaths_sid_text_new = []
- lengths = []
- skipped_phone = 0
- skipped_dur = 0
- for audiopath in tqdm(self.audiopaths_sid_text):
- try:
- phoneme = self.phoneme_data[audiopath][0]
- phoneme = phoneme.split(' ')
- phoneme_ids = cleaned_text_to_sequence(phoneme)
- except Exception:
- print(f"{audiopath} not in self.phoneme_data !")
- skipped_phone += 1
- continue
- size = os.path.getsize("%s/%s" % (self.path5, audiopath))
- duration = size / self.sampling_rate / 2
- if duration == 0:
- print(f"Zero duration for {audiopath}, skipping...")
- skipped_dur += 1
- continue
- if 54 > duration > 0.6 or self.val:
- audiopaths_sid_text_new.append([audiopath, phoneme_ids])
- lengths.append(size // (2 * self.hop_length))
- else:
- skipped_dur += 1
- continue
- print("skipped_phone: ", skipped_phone, ", skipped_dur: ", skipped_dur)
- print("total left: ", len(audiopaths_sid_text_new))
- assert len(audiopaths_sid_text_new) > 1 # 至少能凑够batch size,这里todo
- self.audiopaths_sid_text = audiopaths_sid_text_new
- self.lengths = lengths
- def get_audio_text_speaker_pair(self, audiopath_sid_text):
- audiopath, phoneme_ids = audiopath_sid_text
- text = torch.FloatTensor(phoneme_ids)
- try:
- spec, wav = self.get_audio("%s/%s" % (self.path5, audiopath))
- with torch.no_grad():
- ssl = torch.load("%s/%s.pt" % (self.path4, audiopath), map_location="cpu")
- if (ssl.shape[-1] != spec.shape[-1]):
- typee = ssl.dtype
- ssl = F.pad(ssl.float(), (0, 1), mode="replicate").to(typee)
- ssl.requires_grad = False
- except:
- traceback.print_exc()
- spec = torch.zeros(1025, 100)
- wav = torch.zeros(1, 100 * self.hop_length)
- ssl = torch.zeros(1, 768, 100)
- text = text[-1:]
- print("load audio or ssl error!!!!!!", audiopath)
- return (ssl, spec, wav, text)
- def get_audio(self, filename):
- audio_array = load_audio(filename, self.sampling_rate) # load_audio的方法是已经归一化到-1~1之间的,不用再/32768
- audio = torch.FloatTensor(audio_array) # /32768
- audio_norm = audio
- audio_norm = audio_norm.unsqueeze(0)
- spec = spectrogram_torch(audio_norm, self.filter_length, self.sampling_rate, self.hop_length, self.win_length,
- center=False)
- spec = torch.squeeze(spec, 0)
- return spec, audio_norm
- def get_sid(self, sid):
- sid = torch.LongTensor([int(sid)])
- return sid
- def __getitem__(self, index):
- # with torch.no_grad():
- return self.get_audio_text_speaker_pair(self.audiopaths_sid_text[index])
- def __len__(self):
- return len(self.audiopaths_sid_text)
- def random_slice(self, ssl, wav, mel):
- assert abs(ssl.shape[-1] - wav.shape[-1] // self.hop_length) < 3, (
- "first", ssl.shape, wav.shape)
- len_mel = mel.shape[1]
- if self.val:
- reference_mel = mel[:, :len_mel // 3]
- return reference_mel, ssl, wav, mel
- dir = random.randint(0, 1)
- sep_point = random.randint(int(len_mel // 3), int(len_mel // 3 * 2))
- if dir == 0:
- reference_mel = mel[:, :sep_point]
- ssl = ssl[:, :, sep_point:]
- wav2 = wav[:, sep_point * self.hop_length:]
- mel = mel[:, sep_point:]
- else:
- reference_mel = mel[:, sep_point:]
- ssl = ssl[:, :, :sep_point]
- wav2 = wav[:, :sep_point * self.hop_length]
- mel = mel[:, :sep_point]
- assert abs(ssl.shape[-1] - wav2.shape[-1] // self.hop_length) < 3, (
- ssl.shape, wav.shape, wav2.shape, mel.shape, sep_point, self.hop_length, sep_point * self.hop_length, dir)
- return reference_mel, ssl, wav2, mel
- class TextAudioSpeakerCollate():
- """ Zero-pads model inputs and targets
- """
- def __init__(self, return_ids=False):
- self.return_ids = return_ids
- def __call__(self, batch):
- """Collate's training batch from normalized text, audio and speaker identities
- PARAMS
- ------
- batch: [text_normalized, spec_normalized, wav_normalized, sid]
- """
- # Right zero-pad all one-hot text sequences to max input length
- _, ids_sorted_decreasing = torch.sort(
- torch.LongTensor([x[1].size(1) for x in batch]),
- dim=0, descending=True)
- max_ssl_len = max([x[0].size(2) for x in batch])
- max_ssl_len = int(2 * ((max_ssl_len // 2) + 1))
- max_spec_len = max([x[1].size(1) for x in batch])
- max_spec_len = int(2 * ((max_spec_len // 2) + 1))
- max_wav_len = max([x[2].size(1) for x in batch])
- max_text_len = max([x[3].size(0) for x in batch])
- ssl_lengths = torch.LongTensor(len(batch))
- spec_lengths = torch.LongTensor(len(batch))
- wav_lengths = torch.LongTensor(len(batch))
- text_lengths = torch.LongTensor(len(batch))
- spec_padded = torch.FloatTensor(len(batch), batch[0][1].size(0), max_spec_len)
- wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
- ssl_padded = torch.FloatTensor(len(batch), batch[0][0].size(1), max_ssl_len)
- text_padded = torch.LongTensor(len(batch), max_text_len)
- spec_padded.zero_()
- wav_padded.zero_()
- ssl_padded.zero_()
- text_padded.zero_()
- for i in range(len(ids_sorted_decreasing)):
- row = batch[ids_sorted_decreasing[i]]
- ssl = row[0]
- ssl_padded[i, :, :ssl.size(2)] = ssl[0, :, :]
- ssl_lengths[i] = ssl.size(2)
- spec = row[1]
- spec_padded[i, :, :spec.size(1)] = spec
- spec_lengths[i] = spec.size(1)
- wav = row[2]
- wav_padded[i, :, :wav.size(1)] = wav
- wav_lengths[i] = wav.size(1)
- text = row[3]
- text_padded[i, :text.size(0)] = text
- text_lengths[i] = text.size(0)
- return ssl_padded, ssl_lengths, spec_padded, spec_lengths, wav_padded, wav_lengths, text_padded, text_lengths
- class DistributedBucketSampler(torch.utils.data.distributed.DistributedSampler):
- """
- Maintain similar input lengths in a batch.
- Length groups are specified by boundaries.
- Ex) boundaries = [b1, b2, b3] -> any batch is included either {x | b1 < length(x) <=b2} or {x | b2 < length(x) <= b3}.
- It removes samples which are not included in the boundaries.
- Ex) boundaries = [b1, b2, b3] -> any x s.t. length(x) <= b1 or length(x) > b3 are discarded.
- """
- def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
- super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
- self.lengths = dataset.lengths
- self.batch_size = batch_size
- self.boundaries = boundaries
- self.buckets, self.num_samples_per_bucket = self._create_buckets()
- self.total_size = sum(self.num_samples_per_bucket)
- self.num_samples = self.total_size // self.num_replicas
- def _create_buckets(self):
- buckets = [[] for _ in range(len(self.boundaries) - 1)]
- for i in range(len(self.lengths)):
- length = self.lengths[i]
- idx_bucket = self._bisect(length)
- if idx_bucket != -1:
- buckets[idx_bucket].append(i)
- i = len(buckets) - 1
- while i >= 0:
- if len(buckets[i]) == 0:
- buckets.pop(i)
- self.boundaries.pop(i + 1)
- i -= 1
- num_samples_per_bucket = []
- for i in range(len(buckets)):
- len_bucket = len(buckets[i])
- total_batch_size = self.num_replicas * self.batch_size
- rem = (total_batch_size - (len_bucket % total_batch_size)) % total_batch_size
- num_samples_per_bucket.append(len_bucket + rem)
- return buckets, num_samples_per_bucket
- def __iter__(self):
- g = torch.Generator()
- g.manual_seed(self.epoch)
- indices = []
- if self.shuffle:
- for bucket in self.buckets:
- indices.append(torch.randperm(len(bucket), generator=g).tolist())
- else:
- for bucket in self.buckets:
- indices.append(list(range(len(bucket))))
- batches = []
- for i in range(len(self.buckets)):
- bucket = self.buckets[i]
- len_bucket = len(bucket)
- ids_bucket = indices[i]
- num_samples_bucket = self.num_samples_per_bucket[i]
- rem = num_samples_bucket - len_bucket
- ids_bucket = ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[:(rem % len_bucket)]
- ids_bucket = ids_bucket[self.rank::self.num_replicas]
- for j in range(len(ids_bucket) // self.batch_size):
- batch = [bucket[idx] for idx in ids_bucket[j * self.batch_size:(j + 1) * self.batch_size]]
- batches.append(batch)
- if self.shuffle:
- batch_ids = torch.randperm(len(batches), generator=g).tolist()
- batches = [batches[i] for i in batch_ids]
- self.batches = batches
- assert len(self.batches) * self.batch_size == self.num_samples
- return iter(self.batches)
- def _bisect(self, x, lo=0, hi=None):
- if hi is None:
- hi = len(self.boundaries) - 1
- if hi > lo:
- mid = (hi + lo) // 2
- if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]:
- return mid
- elif x <= self.boundaries[mid]:
- return self._bisect(x, lo, mid)
- else:
- return self._bisect(x, mid + 1, hi)
- else:
- return -1
- def __len__(self):
- return self.num_samples // self.batch_size
|