123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676 |
- '''
- 按中英混合识别
- 按日英混合识别
- 多语种启动切分识别语种
- 全部按中文识别
- 全部按英文识别
- 全部按日文识别
- '''
- import os, re, logging
- import LangSegment
- logging.getLogger("markdown_it").setLevel(logging.ERROR)
- logging.getLogger("urllib3").setLevel(logging.ERROR)
- logging.getLogger("httpcore").setLevel(logging.ERROR)
- logging.getLogger("httpx").setLevel(logging.ERROR)
- logging.getLogger("asyncio").setLevel(logging.ERROR)
- logging.getLogger("charset_normalizer").setLevel(logging.ERROR)
- logging.getLogger("torchaudio._extension").setLevel(logging.ERROR)
- import pdb
- if os.path.exists("./gweight.txt"):
- with open("./gweight.txt", 'r', encoding="utf-8") as file:
- gweight_data = file.read()
- gpt_path = os.environ.get(
- "gpt_path", gweight_data)
- else:
- gpt_path = os.environ.get(
- "gpt_path", "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt")
- if os.path.exists("./sweight.txt"):
- with open("./sweight.txt", 'r', encoding="utf-8") as file:
- sweight_data = file.read()
- sovits_path = os.environ.get("sovits_path", sweight_data)
- else:
- sovits_path = os.environ.get("sovits_path", "GPT_SoVITS/pretrained_models/s2G488k.pth")
- # gpt_path = os.environ.get(
- # "gpt_path", "pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
- # )
- # sovits_path = os.environ.get("sovits_path", "pretrained_models/s2G488k.pth")
- cnhubert_base_path = os.environ.get(
- "cnhubert_base_path", "GPT_SoVITS/pretrained_models/chinese-hubert-base"
- )
- bert_path = os.environ.get(
- "bert_path", "GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"
- )
- infer_ttswebui = os.environ.get("infer_ttswebui", 9872)
- infer_ttswebui = int(infer_ttswebui)
- is_share = os.environ.get("is_share", "False")
- is_share = eval(is_share)
- if "_CUDA_VISIBLE_DEVICES" in os.environ:
- os.environ["CUDA_VISIBLE_DEVICES"] = os.environ["_CUDA_VISIBLE_DEVICES"]
- is_half = eval(os.environ.get("is_half", "True"))
- import gradio as gr
- from transformers import AutoModelForMaskedLM, AutoTokenizer
- import numpy as np
- import librosa, torch
- from feature_extractor import cnhubert
- cnhubert.cnhubert_base_path = cnhubert_base_path
- from module.models import SynthesizerTrn
- from AR.models.t2s_lightning_module import Text2SemanticLightningModule
- from text import cleaned_text_to_sequence
- from text.cleaner import clean_text
- from time import time as ttime
- from module.mel_processing import spectrogram_torch
- from my_utils import load_audio
- from tools.i18n.i18n import I18nAuto
- i18n = I18nAuto()
- os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
- if torch.cuda.is_available():
- device = "cuda"
- elif torch.backends.mps.is_available():
- device = "mps"
- else:
- device = "cpu"
- tokenizer = AutoTokenizer.from_pretrained(bert_path)
- bert_model = AutoModelForMaskedLM.from_pretrained(bert_path)
- if is_half == True:
- bert_model = bert_model.half().to(device)
- else:
- bert_model = bert_model.to(device)
- def get_bert_feature(text, word2ph):
- with torch.no_grad():
- inputs = tokenizer(text, return_tensors="pt")
- for i in inputs:
- inputs[i] = inputs[i].to(device)
- res = bert_model(**inputs, output_hidden_states=True)
- res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
- assert len(word2ph) == len(text)
- phone_level_feature = []
- for i in range(len(word2ph)):
- repeat_feature = res[i].repeat(word2ph[i], 1)
- phone_level_feature.append(repeat_feature)
- phone_level_feature = torch.cat(phone_level_feature, dim=0)
- return phone_level_feature.T
- class DictToAttrRecursive(dict):
- def __init__(self, input_dict):
- super().__init__(input_dict)
- for key, value in input_dict.items():
- if isinstance(value, dict):
- value = DictToAttrRecursive(value)
- self[key] = value
- setattr(self, key, value)
- def __getattr__(self, item):
- try:
- return self[item]
- except KeyError:
- raise AttributeError(f"Attribute {item} not found")
- def __setattr__(self, key, value):
- if isinstance(value, dict):
- value = DictToAttrRecursive(value)
- super(DictToAttrRecursive, self).__setitem__(key, value)
- super().__setattr__(key, value)
- def __delattr__(self, item):
- try:
- del self[item]
- except KeyError:
- raise AttributeError(f"Attribute {item} not found")
- ssl_model = cnhubert.get_model()
- if is_half == True:
- ssl_model = ssl_model.half().to(device)
- else:
- ssl_model = ssl_model.to(device)
- def change_sovits_weights(sovits_path):
- global vq_model, hps
- dict_s2 = torch.load(sovits_path, map_location="cpu")
- hps = dict_s2["config"]
- hps = DictToAttrRecursive(hps)
- hps.model.semantic_frame_rate = "25hz"
- vq_model = SynthesizerTrn(
- hps.data.filter_length // 2 + 1,
- hps.train.segment_size // hps.data.hop_length,
- n_speakers=hps.data.n_speakers,
- **hps.model
- )
- if ("pretrained" not in sovits_path):
- del vq_model.enc_q
- if is_half == True:
- vq_model = vq_model.half().to(device)
- else:
- vq_model = vq_model.to(device)
- vq_model.eval()
- print(vq_model.load_state_dict(dict_s2["weight"], strict=False))
- with open("./sweight.txt", "w", encoding="utf-8") as f:
- f.write(sovits_path)
- change_sovits_weights(sovits_path)
- def change_gpt_weights(gpt_path):
- global hz, max_sec, t2s_model, config
- hz = 50
- dict_s1 = torch.load(gpt_path, map_location="cpu")
- config = dict_s1["config"]
- max_sec = config["data"]["max_sec"]
- t2s_model = Text2SemanticLightningModule(config, "****", is_train=False)
- t2s_model.load_state_dict(dict_s1["weight"])
- if is_half == True:
- t2s_model = t2s_model.half()
- t2s_model = t2s_model.to(device)
- t2s_model.eval()
- total = sum([param.nelement() for param in t2s_model.parameters()])
- print("Number of parameter: %.2fM" % (total / 1e6))
- with open("./gweight.txt", "w", encoding="utf-8") as f: f.write(gpt_path)
- change_gpt_weights(gpt_path)
- def get_spepc(hps, filename):
- audio = load_audio(filename, int(hps.data.sampling_rate))
- audio = torch.FloatTensor(audio)
- audio_norm = audio
- audio_norm = audio_norm.unsqueeze(0)
- spec = spectrogram_torch(
- audio_norm,
- hps.data.filter_length,
- hps.data.sampling_rate,
- hps.data.hop_length,
- hps.data.win_length,
- center=False,
- )
- return spec
- dict_language = {
- i18n("中文"): "all_zh",#全部按中文识别
- i18n("英文"): "en",#全部按英文识别#######不变
- i18n("日文"): "all_ja",#全部按日文识别
- i18n("中英混合"): "zh",#按中英混合识别####不变
- i18n("日英混合"): "ja",#按日英混合识别####不变
- i18n("多语种混合"): "auto",#多语种启动切分识别语种
- }
- def splite_en_inf(sentence, language):
- pattern = re.compile(r'[a-zA-Z ]+')
- textlist = []
- langlist = []
- pos = 0
- for match in pattern.finditer(sentence):
- start, end = match.span()
- if start > pos:
- textlist.append(sentence[pos:start])
- langlist.append(language)
- textlist.append(sentence[start:end])
- langlist.append("en")
- pos = end
- if pos < len(sentence):
- textlist.append(sentence[pos:])
- langlist.append(language)
- # Merge punctuation into previous word
- for i in range(len(textlist)-1, 0, -1):
- if re.match(r'^[\W_]+$', textlist[i]):
- textlist[i-1] += textlist[i]
- del textlist[i]
- del langlist[i]
- # Merge consecutive words with the same language tag
- i = 0
- while i < len(langlist) - 1:
- if langlist[i] == langlist[i+1]:
- textlist[i] += textlist[i+1]
- del textlist[i+1]
- del langlist[i+1]
- else:
- i += 1
- return textlist, langlist
- def clean_text_inf(text, language):
- formattext = ""
- language = language.replace("all_","")
- for tmp in LangSegment.getTexts(text):
- if language == "ja":
- if tmp["lang"] == language or tmp["lang"] == "zh":
- formattext += tmp["text"] + " "
- continue
- if tmp["lang"] == language:
- formattext += tmp["text"] + " "
- while " " in formattext:
- formattext = formattext.replace(" ", " ")
- phones, word2ph, norm_text = clean_text(formattext, language)
- phones = cleaned_text_to_sequence(phones)
- return phones, word2ph, norm_text
- dtype=torch.float16 if is_half == True else torch.float32
- def get_bert_inf(phones, word2ph, norm_text, language):
- language=language.replace("all_","")
- if language == "zh":
- bert = get_bert_feature(norm_text, word2ph).to(device)#.to(dtype)
- else:
- bert = torch.zeros(
- (1024, len(phones)),
- dtype=torch.float16 if is_half == True else torch.float32,
- ).to(device)
- return bert
- def nonen_clean_text_inf(text, language):
- if(language!="auto"):
- textlist, langlist = splite_en_inf(text, language)
- else:
- textlist=[]
- langlist=[]
- for tmp in LangSegment.getTexts(text):
- langlist.append(tmp["lang"])
- textlist.append(tmp["text"])
- phones_list = []
- word2ph_list = []
- norm_text_list = []
- for i in range(len(textlist)):
- lang = langlist[i]
- phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
- phones_list.append(phones)
- if lang == "zh":
- word2ph_list.append(word2ph)
- norm_text_list.append(norm_text)
- print(word2ph_list)
- phones = sum(phones_list, [])
- word2ph = sum(word2ph_list, [])
- norm_text = ' '.join(norm_text_list)
- return phones, word2ph, norm_text
- def nonen_get_bert_inf(text, language):
- if(language!="auto"):
- textlist, langlist = splite_en_inf(text, language)
- else:
- textlist=[]
- langlist=[]
- for tmp in LangSegment.getTexts(text):
- langlist.append(tmp["lang"])
- textlist.append(tmp["text"])
- print(textlist)
- print(langlist)
- bert_list = []
- for i in range(len(textlist)):
- lang = langlist[i]
- phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
- bert = get_bert_inf(phones, word2ph, norm_text, lang)
- bert_list.append(bert)
- bert = torch.cat(bert_list, dim=1)
- return bert
- splits = {",", "。", "?", "!", ",", ".", "?", "!", "~", ":", ":", "—", "…", }
- def get_first(text):
- pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
- text = re.split(pattern, text)[0].strip()
- return text
- def get_cleaned_text_final(text,language):
- if language in {"en","all_zh","all_ja"}:
- phones, word2ph, norm_text = clean_text_inf(text, language)
- elif language in {"zh", "ja","auto"}:
- phones, word2ph, norm_text = nonen_clean_text_inf(text, language)
- return phones, word2ph, norm_text
- def get_bert_final(phones, word2ph, text,language,device):
- if language == "en":
- bert = get_bert_inf(phones, word2ph, text, language)
- elif language in {"zh", "ja","auto"}:
- bert = nonen_get_bert_inf(text, language)
- elif language == "all_zh":
- bert = get_bert_feature(text, word2ph).to(device)
- else:
- bert = torch.zeros((1024, len(phones))).to(device)
- return bert
- def merge_short_text_in_array(texts, threshold):
- if (len(texts)) < 2:
- return texts
- result = []
- text = ""
- for ele in texts:
- text += ele
- if len(text) >= threshold:
- result.append(text)
- text = ""
- if (len(text) > 0):
- if len(result) == 0:
- result.append(text)
- else:
- result[len(result) - 1] += text
- return result
- def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language, how_to_cut=i18n("不切"), top_k=20, top_p=0.6, temperature=0.6, ref_free = False):
- if prompt_text is None or len(prompt_text) == 0:
- ref_free = True
- t0 = ttime()
- prompt_language = dict_language[prompt_language]
- text_language = dict_language[text_language]
- if not ref_free:
- prompt_text = prompt_text.strip("\n")
- if (prompt_text[-1] not in splits): prompt_text += "。" if prompt_language != "en" else "."
- print(i18n("实际输入的参考文本:"), prompt_text)
- text = text.strip("\n")
- if (text[0] not in splits and len(get_first(text)) < 4): text = "。" + text if text_language != "en" else "." + text
-
- print(i18n("实际输入的目标文本:"), text)
- zero_wav = np.zeros(
- int(hps.data.sampling_rate * 0.3),
- dtype=np.float16 if is_half == True else np.float32,
- )
- with torch.no_grad():
- wav16k, sr = librosa.load(ref_wav_path, sr=16000)
- if (wav16k.shape[0] > 160000 or wav16k.shape[0] < 48000):
- raise OSError(i18n("参考音频在3~10秒范围外,请更换!"))
- wav16k = torch.from_numpy(wav16k)
- zero_wav_torch = torch.from_numpy(zero_wav)
- if is_half == True:
- wav16k = wav16k.half().to(device)
- zero_wav_torch = zero_wav_torch.half().to(device)
- else:
- wav16k = wav16k.to(device)
- zero_wav_torch = zero_wav_torch.to(device)
- wav16k = torch.cat([wav16k, zero_wav_torch])
- ssl_content = ssl_model.model(wav16k.unsqueeze(0))[
- "last_hidden_state"
- ].transpose(
- 1, 2
- ) # .float()
- codes = vq_model.extract_latent(ssl_content)
-
- prompt_semantic = codes[0, 0]
- t1 = ttime()
- if (how_to_cut == i18n("凑四句一切")):
- text = cut1(text)
- elif (how_to_cut == i18n("凑50字一切")):
- text = cut2(text)
- elif (how_to_cut == i18n("按中文句号。切")):
- text = cut3(text)
- elif (how_to_cut == i18n("按英文句号.切")):
- text = cut4(text)
- elif (how_to_cut == i18n("按标点符号切")):
- text = cut5(text)
- while "\n\n" in text:
- text = text.replace("\n\n", "\n")
- print(i18n("实际输入的目标文本(切句后):"), text)
- texts = text.split("\n")
- texts = merge_short_text_in_array(texts, 5)
- audio_opt = []
- if not ref_free:
- phones1, word2ph1, norm_text1=get_cleaned_text_final(prompt_text, prompt_language)
- bert1=get_bert_final(phones1, word2ph1, norm_text1,prompt_language,device).to(dtype)
- for text in texts:
- # 解决输入目标文本的空行导致报错的问题
- if (len(text.strip()) == 0):
- continue
- if (text[-1] not in splits): text += "。" if text_language != "en" else "."
- print(i18n("实际输入的目标文本(每句):"), text)
- phones2, word2ph2, norm_text2 = get_cleaned_text_final(text, text_language)
- bert2 = get_bert_final(phones2, word2ph2, norm_text2, text_language, device).to(dtype)
- if not ref_free:
- bert = torch.cat([bert1, bert2], 1)
- all_phoneme_ids = torch.LongTensor(phones1+phones2).to(device).unsqueeze(0)
- else:
- bert = bert2
- all_phoneme_ids = torch.LongTensor(phones2).to(device).unsqueeze(0)
- bert = bert.to(device).unsqueeze(0)
- all_phoneme_len = torch.tensor([all_phoneme_ids.shape[-1]]).to(device)
- prompt = prompt_semantic.unsqueeze(0).to(device)
- t2 = ttime()
- with torch.no_grad():
- # pred_semantic = t2s_model.model.infer(
- pred_semantic, idx = t2s_model.model.infer_panel(
- all_phoneme_ids,
- all_phoneme_len,
- None if ref_free else prompt,
- bert,
- # prompt_phone_len=ph_offset,
- top_k=top_k,
- top_p=top_p,
- temperature=temperature,
- early_stop_num=hz * max_sec,
- )
- t3 = ttime()
- # print(pred_semantic.shape,idx)
- pred_semantic = pred_semantic[:, -idx:].unsqueeze(
- 0
- ) # .unsqueeze(0)#mq要多unsqueeze一次
- refer = get_spepc(hps, ref_wav_path) # .to(device)
- if is_half == True:
- refer = refer.half().to(device)
- else:
- refer = refer.to(device)
- # audio = vq_model.decode(pred_semantic, all_phoneme_ids, refer).detach().cpu().numpy()[0, 0]
- audio = (
- vq_model.decode(
- pred_semantic, torch.LongTensor(phones2).to(device).unsqueeze(0), refer
- )
- .detach()
- .cpu()
- .numpy()[0, 0]
- ) ###试试重建不带上prompt部分
- max_audio=np.abs(audio).max()#简单防止16bit爆音
- if max_audio>1:audio/=max_audio
- audio_opt.append(audio)
- audio_opt.append(zero_wav)
- t4 = ttime()
- print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t3 - t2, t4 - t3))
- yield hps.data.sampling_rate, (np.concatenate(audio_opt, 0) * 32768).astype(
- np.int16
- )
- def split(todo_text):
- todo_text = todo_text.replace("……", "。").replace("——", ",")
- if todo_text[-1] not in splits:
- todo_text += "。"
- i_split_head = i_split_tail = 0
- len_text = len(todo_text)
- todo_texts = []
- while 1:
- if i_split_head >= len_text:
- break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
- if todo_text[i_split_head] in splits:
- i_split_head += 1
- todo_texts.append(todo_text[i_split_tail:i_split_head])
- i_split_tail = i_split_head
- else:
- i_split_head += 1
- return todo_texts
- def cut1(inp):
- inp = inp.strip("\n")
- inps = split(inp)
- split_idx = list(range(0, len(inps), 4))
- split_idx[-1] = None
- if len(split_idx) > 1:
- opts = []
- for idx in range(len(split_idx) - 1):
- opts.append("".join(inps[split_idx[idx]: split_idx[idx + 1]]))
- else:
- opts = [inp]
- return "\n".join(opts)
- def cut2(inp):
- inp = inp.strip("\n")
- inps = split(inp)
- if len(inps) < 2:
- return inp
- opts = []
- summ = 0
- tmp_str = ""
- for i in range(len(inps)):
- summ += len(inps[i])
- tmp_str += inps[i]
- if summ > 50:
- summ = 0
- opts.append(tmp_str)
- tmp_str = ""
- if tmp_str != "":
- opts.append(tmp_str)
- # print(opts)
- if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
- opts[-2] = opts[-2] + opts[-1]
- opts = opts[:-1]
- return "\n".join(opts)
- def cut3(inp):
- inp = inp.strip("\n")
- return "\n".join(["%s" % item for item in inp.strip("。").split("。")])
- def cut4(inp):
- inp = inp.strip("\n")
- return "\n".join(["%s" % item for item in inp.strip(".").split(".")])
- # contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
- def cut5(inp):
- # if not re.search(r'[^\w\s]', inp[-1]):
- # inp += '。'
- inp = inp.strip("\n")
- punds = r'[,.;?!、,。?!;:]'
- items = re.split(f'({punds})', inp)
- items = ["".join(group) for group in zip(items[::2], items[1::2])]
- opt = "\n".join(items)
- return opt
- def custom_sort_key(s):
- # 使用正则表达式提取字符串中的数字部分和非数字部分
- parts = re.split('(\d+)', s)
- # 将数字部分转换为整数,非数字部分保持不变
- parts = [int(part) if part.isdigit() else part for part in parts]
- return parts
- def change_choices():
- SoVITS_names, GPT_names = get_weights_names()
- return {"choices": sorted(SoVITS_names, key=custom_sort_key), "__type__": "update"}, {"choices": sorted(GPT_names, key=custom_sort_key), "__type__": "update"}
- pretrained_sovits_name = "GPT_SoVITS/pretrained_models/s2G488k.pth"
- pretrained_gpt_name = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
- SoVITS_weight_root = "SoVITS_weights"
- GPT_weight_root = "GPT_weights"
- os.makedirs(SoVITS_weight_root, exist_ok=True)
- os.makedirs(GPT_weight_root, exist_ok=True)
- def get_weights_names():
- SoVITS_names = [pretrained_sovits_name]
- for name in os.listdir(SoVITS_weight_root):
- if name.endswith(".pth"): SoVITS_names.append("%s/%s" % (SoVITS_weight_root, name))
- GPT_names = [pretrained_gpt_name]
- for name in os.listdir(GPT_weight_root):
- if name.endswith(".ckpt"): GPT_names.append("%s/%s" % (GPT_weight_root, name))
- return SoVITS_names, GPT_names
- SoVITS_names, GPT_names = get_weights_names()
- with gr.Blocks(title="GPT-SoVITS WebUI") as app:
- gr.Markdown(
- value=i18n("本软件以MIT协议开源, 作者不对软件具备任何控制力, 使用软件者、传播软件导出的声音者自负全责. <br>如不认可该条款, 则不能使用或引用软件包内任何代码和文件. 详见根目录<b>LICENSE</b>.")
- )
- with gr.Group():
- gr.Markdown(value=i18n("模型切换"))
- with gr.Row():
- GPT_dropdown = gr.Dropdown(label=i18n("GPT模型列表"), choices=sorted(GPT_names, key=custom_sort_key), value=gpt_path, interactive=True)
- SoVITS_dropdown = gr.Dropdown(label=i18n("SoVITS模型列表"), choices=sorted(SoVITS_names, key=custom_sort_key), value=sovits_path, interactive=True)
- refresh_button = gr.Button(i18n("刷新模型路径"), variant="primary")
- refresh_button.click(fn=change_choices, inputs=[], outputs=[SoVITS_dropdown, GPT_dropdown])
- SoVITS_dropdown.change(change_sovits_weights, [SoVITS_dropdown], [])
- GPT_dropdown.change(change_gpt_weights, [GPT_dropdown], [])
- gr.Markdown(value=i18n("*请上传并填写参考信息"))
- with gr.Row():
- inp_ref = gr.Audio(label=i18n("请上传3~10秒内参考音频,超过会报错!"), type="filepath")
- with gr.Column():
- ref_text_free = gr.Checkbox(label=i18n("开启无参考文本模式。不填参考文本亦相当于开启。"), value=False, interactive=True, show_label=True)
- gr.Markdown(i18n("使用无参考文本模式时建议使用微调的GPT"))
- prompt_text = gr.Textbox(label=i18n("参考音频的文本"), value="")
- prompt_language = gr.Dropdown(
- label=i18n("参考音频的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
- )
- gr.Markdown(value=i18n("*请填写需要合成的目标文本。中英混合选中文,日英混合选日文,中日混合暂不支持,非目标语言文本自动遗弃。"))
- with gr.Row():
- text = gr.Textbox(label=i18n("需要合成的文本"), value="")
- text_language = gr.Dropdown(
- label=i18n("需要合成的语种"), choices=[i18n("中文"), i18n("英文"), i18n("日文"), i18n("中英混合"), i18n("日英混合"), i18n("多语种混合")], value=i18n("中文")
- )
- how_to_cut = gr.Radio(
- label=i18n("怎么切"),
- choices=[i18n("不切"), i18n("凑四句一切"), i18n("凑50字一切"), i18n("按中文句号。切"), i18n("按英文句号.切"), i18n("按标点符号切"), ],
- value=i18n("凑四句一切"),
- interactive=True,
- )
- with gr.Row():
- gr.Markdown("gpt采样参数(无参考文本时不要太低):")
- top_k = gr.Slider(minimum=1,maximum=100,step=1,label=i18n("top_k"),value=5,interactive=True)
- top_p = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("top_p"),value=1,interactive=True)
- temperature = gr.Slider(minimum=0,maximum=1,step=0.05,label=i18n("temperature"),value=1,interactive=True)
- inference_button = gr.Button(i18n("合成语音"), variant="primary")
- output = gr.Audio(label=i18n("输出的语音"))
- inference_button.click(
- get_tts_wav,
- [inp_ref, prompt_text, prompt_language, text, text_language, how_to_cut, top_k, top_p, temperature, ref_text_free],
- [output],
- )
- gr.Markdown(value=i18n("文本切分工具。太长的文本合成出来效果不一定好,所以太长建议先切。合成会根据文本的换行分开合成再拼起来。"))
- with gr.Row():
- text_inp = gr.Textbox(label=i18n("需要合成的切分前文本"), value="")
- button1 = gr.Button(i18n("凑四句一切"), variant="primary")
- button2 = gr.Button(i18n("凑50字一切"), variant="primary")
- button3 = gr.Button(i18n("按中文句号。切"), variant="primary")
- button4 = gr.Button(i18n("按英文句号.切"), variant="primary")
- button5 = gr.Button(i18n("按标点符号切"), variant="primary")
- text_opt = gr.Textbox(label=i18n("切分后文本"), value="")
- button1.click(cut1, [text_inp], [text_opt])
- button2.click(cut2, [text_inp], [text_opt])
- button3.click(cut3, [text_inp], [text_opt])
- button4.click(cut4, [text_inp], [text_opt])
- button5.click(cut5, [text_inp], [text_opt])
- gr.Markdown(value=i18n("后续将支持转音素、手工修改音素、语音合成分步执行。"))
- app.queue(concurrency_count=511, max_size=1022).launch(
- server_name="0.0.0.0",
- inbrowser=True,
- share=is_share,
- server_port=infer_ttswebui,
- quiet=True,
- )
|