1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859 |
- from evaluator import *
- DESCRIPTION = "Test if the model can implement some string logic given a fuzzy description."
- TAGS = ['code', 'python']
- question = """
- Given a parse function like
- def parse_transcript(content):
- transcript_segments = []
- pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)'
- matches = re.findall(pattern, content)
- for start_time, end_time, text in matches:
- start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
- end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
- transcript_segments.append((start_seconds, end_seconds, text))
- return transcript_segments
- for data like
- [00:00:14.240 --> 00:00:14.420] the
- [00:00:14.420 --> 00:00:14.860] robust
- [00:00:14.860 --> 00:00:15.020] ness
- [00:00:15.020 --> 00:00:15.140] of
- [00:00:15.140 --> 00:00:15.500] neural
- [00:00:15.500 --> 00:00:15.870] networks
- [00:00:15.870 --> 00:00:16.200] .
- [00:00:16.200 --> 00:00:16.410] And
- [00:00:16.410 --> 00:00:16.700] this
- [00:00:16.700 --> 00:00:16.840] is
- [00:00:16.840 --> 00:00:17.200] joint
- write a merge() function that (1) calls parse and (2) merges words into sentences that end in period. Start with the first word and end with the period. Return a list of strings.
- """
- test_case, answer = make_python_test([("""merge("[00:00:14.240 --> 00:00:14.420] the\\n[00:00:14.420 --> 00:00:14.860] robust\\n[00:00:14.860 --> 00:00:15.020] ness\\n[00:00:15.020 --> 00:00:15.140] of\\n[00:00:15.140 --> 00:00:15.500] neural\\n[00:00:15.500 --> 00:00:15.870] networks\\n[00:00:15.870 --> 00:00:16.200] .\\n[00:00:16.200 --> 00:00:16.410] And\\n[00:00:16.410 --> 00:00:16.700] this\\n[00:00:16.700 --> 00:00:16.840] is\\n[00:00:16.840 --> 00:00:17.200] joint\\n")""", "[' the robustness of neural networks.', ' And this is joint']")], header="""
- def parse_transcript(content):
- transcript_segments = []
- pattern = r'\[(\d{2}:\d{2}:\d{2}\.\d{3}) --> (\d{2}:\d{2}:\d{2}\.\d{3})\] (.*)'
- matches = re.findall(pattern, content)
- for start_time, end_time, text in matches:
- start_seconds = timedelta(hours=int(start_time[:2]), minutes=int(start_time[3:5]), seconds=int(start_time[6:8]), milliseconds=int(start_time[9:])).total_seconds()
- end_seconds = timedelta(hours=int(end_time[:2]), minutes=int(end_time[3:5]), seconds=int(end_time[6:8]), milliseconds=int(end_time[9:])).total_seconds()
- transcript_segments.append((start_seconds, end_seconds, text))
- return transcript_segments
- """)
- TestWhisperMerge = question >> LLMRun() >> ExtractCode() >> PythonRun(test_case) >> SubstringEvaluator(answer)
- if __name__ == "__main__":
- print(run_test(TestWhisperMerge))
|