from evaluator import * DESCRIPTION = "Test if the model can successfully convert unstructured data to JSON." TAGS = ['data'] question = """ Create a JSON metadata for these models: Mistral-7B-v0.1 RedPajama-INCITE-7B-Base RedPajama-INCITE-Base-3B-v1 falcon40b falcon7b gpt2-xl llama-65b llama-7b neo-1.3 neo-2.7 neo-6 open_llama_3b_v2 open_llama_7b_v2 opt-1.3b opt-6.7b pythia-1.4 pythia-1.4-dedup pythia-6.9 pythia-6.9-dedup With the format: {"Mistral-7B-v0.1": {"size": 7, dataset: "", "family": "Mistral"}, ...} where family is one of base = [ 'pythia', 'llama', 'Mistral', 'gpt2', 'opt', 'RedPajama', 'neo', 'open_llama', 'falcon' ] gpt2-xl is 1.5b parameters. """ TestMakeJson = question >> LLMRun() >> ExtractJSON() >> JSONSubsetEvaluator({ "Mistral-7B-v0.1": {"size": 7, "dataset": "", "family": "Mistral"}, "RedPajama-INCITE-7B-Base": {"size": 7, "dataset": "", "family": "RedPajama"}, "RedPajama-INCITE-Base-3B-v1": {"size": 3, "dataset": "", "family": "RedPajama"}, "falcon40b": {"size": 40, "dataset": "", "family": "falcon"}, "falcon7b": {"size": 7, "dataset": "", "family": "falcon"}, "gpt2-xl": {"size": 1.5, "dataset": "", "family": "gpt2"}, "llama-65b": {"size": 65, "dataset": "", "family": "llama"}, "llama-7b": {"size": 7, "dataset": "", "family": "llama"}, "neo-1.3": {"size": 1.3, "dataset": "", "family": "neo"}, "neo-2.7": {"size": 2.7, "dataset": "", "family": "neo"}, "neo-6": {"size": 6, "dataset": "", "family": "neo"}, "open_llama_3b_v2": {"size": 3, "dataset": "", "family": "open_llama"}, "open_llama_7b_v2": {"size": 7, "dataset": "", "family": "open_llama"}, "opt-1.3b": {"size": 1.3, "dataset": "", "family": "opt"}, "opt-6.7b": {"size": 6.7, "dataset": "", "family": "opt"}, "pythia-1.4": {"size": 1.4, "dataset": "", "family": "pythia"}, "pythia-1.4-dedup": {"size": 1.4, "dataset": "", "family": "pythia"}, "pythia-6.9": {"size": 6.9, "dataset": "", "family": "pythia"}, "pythia-6.9-dedup": {"size": 6.9, "dataset": "", "family": "pythia"} }) if __name__ == "__main__": print(run_test(TestMakeJson))