from evaluator import * DESCRIPTION = "Test if the model can infer what data to sum and what to ignore by example with vague instructions." TAGS = ['code', 'python'] question = ''' Here's some data QUERY A361 Found at: 160392127418 Number of times present: 4 Found at: 150158692866 Number of times present: 3 Found at: 122340445248 Number of times present: 17 Found at: 137248651778 Number of times present: 84 Found at: 131891981708 Number of times present: 66 QUERY 32B57 Found at: 194561247604 Number of times present: 4 Found at: 82888490886 Number of times present: 3 Found at: 115836535414 Number of times present: 19 Found at: 79615924948 Number of times present: 80 Write a python function called `process` that will take data like this as an argument and return a dict where the keys are the like A361/32B57 and the values are how often its present in total. ''' data = "QUERY A361\\nFound at: 160392127418\\nNumber of times present: 4\\n\\n\\nFound at: 150158692866\\nNumber of times present: 4\\n\\n\\nFound at: 122340445248\\nNumber of times present: 17\\n\\n\\nFound at: 137248651778\\nNumber of times present: 84\\n\\n\\nFound at: 131891981708\\nNumber of times present: 66\\n\\n\\nQUERY 32B57\\nFound at: 194561247604\\nNumber of times present: 4\\n\\n\\nFound at: 82888490886\\nNumber of times present: 3\\n\\n\\nFound at: 115836535414\\nNumber of times present: 19\\n\\n\\nFound at: 79615924948\\nNumber of times present: 81\\n" test_case, answer = make_python_test([(f"process('{data}')", "{'A361': 175, '32B57': 107}")]) TestSumSomeData = question >> LLMRun() >> ExtractCode(keep_main=True) >> PythonRun(test_case) >> SubstringEvaluator(answer) if __name__ == "__main__": print(run_test(TestSumSomeData))